International Conference on Applied Mathematics \& Computational

 Science
A fast and efficient method for solving the multiple generalized circle detection problem

Rudolf Scitovski
Department of Mathematics, University of Osijek

In collaboration with:
Kristian Sabo, Department of Mathematics, University of Osijek

$$
\text { Budapest, October 6-8, } 2018
$$

Problem statement

$\mathcal{A}=\left\{a^{i}=\left(x_{i}, y_{i}\right) \in \Delta \subset \mathbb{R}^{2}: \Delta=\left[\alpha_{1}, \beta_{1}\right] \times\left[\alpha_{2}, \beta_{2}\right], i=1, \ldots, m\right\}$
(set of data points coming from a number of generalized circles in the plane not known in advance that should be reconstructed or detected)

Assumption: Number of data points coming from a generalized circle \mathcal{C} depends on $|\mathcal{C}|$

$$
\begin{aligned}
\mathcal{C}(\mu, \nu, r) & =\left\{x \in \mathbb{R}^{2}: D(\operatorname{seg}(\mu, \nu), x)=r\right\}, \\
\operatorname{seg}(\mu, \nu) & =\left\{x \in \mathbb{R}^{2}: x=\lambda \mu+(1-\lambda) \nu, \lambda \in[0,1]\right\},
\end{aligned}
$$

Applications - may arise in research in various areas like biology, medicine, etc.

Problem statement - center-based clustering

$\Pi(\mathcal{A})=\left\{\pi_{1}, \ldots, \pi_{k}\right\}, \mathcal{A} \subset \mathbb{R}^{n} \quad(k$-partition $)$

$$
i=1
$$

$d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, d(u, v)=\|u-v\|_{2}^{2} \quad$ (LS-distance-like function)
$c_{j}:=\underset{x \in \operatorname{conv}\left(\pi_{j}\right)}{\operatorname{argmin}} \sum_{a^{i} \in \pi_{j}} d\left(x, a^{i}\right) \quad$ (centroid of the cluster π_{j})

Global optimization problem (GOP)

$$
\underset{\Pi \in \mathcal{P}(\mathcal{A} ; k)}{\operatorname{argmin}} \mathcal{F}(\Pi), \quad \mathcal{F}(\Pi)=\sum_{j=1}^{k} \sum_{a^{i} \in \pi_{j}} d\left(c_{j}, a^{i}\right)
$$

$\mathcal{P}(\mathcal{A} ; k)$ (set of all partitions)

Problem statement - center-based clustering

Conversely, let $z_{1}, \ldots, z_{k} \in \mathbb{R}^{n}$ be the set of points
Minimal distance principle gives the partition $\Pi=\left\{\pi\left(z_{1}\right), \ldots, \pi\left(z_{k}\right)\right\}$

$$
\pi\left(z_{j}\right)=\left\{a \in \mathcal{A}: d\left(z_{j}, a\right) \leq d\left(z_{s}, a\right), \forall s=1, \ldots, k\right\}, \quad j=1, \ldots, k
$$

Global optimization problem:

$$
\underset{z \in \Delta^{k}}{\operatorname{argmin}} F(z), \quad F(z)=\sum_{i=1}^{m} \min _{1 \leq j \leq k} d\left(z_{j}, a^{i}\right) \quad z=\left(z_{1}, \ldots, z_{k}\right) .
$$

In the case when cluster-centers are generalized circles (\mathcal{C}-cluster centers)

$$
\underset{\mu, \nu \in \Delta^{k}, r \in(0, R]^{k}}{\operatorname{argmin}} F(\mu, \nu, r), \quad F(\mu, \nu, r)=\sum_{i=1}^{m} \min _{1 \leq j \leq k} \mathfrak{D}\left(\mathcal{C}_{j}\left(\mu_{j}, \nu_{j}, r_{j}\right), a^{i}\right),
$$

$R=\frac{1}{2} \min \left\{\alpha_{2}-\alpha_{1}, \beta_{2}-\beta_{1}\right\}$,
$\mathfrak{D}\left(\mathcal{C}_{j}, a^{i}\right) \quad$ (distance from the point a^{i} to the generalized circle \mathcal{C}_{j})

Problem statement - distance \mathfrak{D} from the point to the generalized circle

$$
\begin{aligned}
& D(\operatorname{seg}(\mu, \nu), a)=\min _{t \in \operatorname{seg}[\mu, \nu]}\|t-a\|_{2}=\left\{\begin{array}{ll}
\|a-\mu\|_{2}, & (\nu-\mu)^{T}(a-\mu) \leq 0, \\
\|a-\nu\|_{2}, & (\mu-\nu)^{T}(a-\nu)<0, \\
\left\|\mu \frac{(\nu-\mu)^{T}(\nu-a)}{\|\mu-\nu\|_{2}^{2}}+\left(1-\frac{(\nu-\mu)^{T}(\nu-a)}{\|\mu-\nu\|_{2}^{2}}\right) \nu\right\|_{2}
\end{array},\right. \text { else. } \\
& \mathfrak{D}_{1}(\mathcal{C}(\mu, \nu, r), a)=|D(\operatorname{seg}(\mu, \nu), a)-r| \quad(\text { LAD-distance }) \\
& \mathfrak{D}_{2}(\mathcal{C}(\mu, \nu, r), a)=(D(\operatorname{seg}(\mu, \nu), a)-r)^{2} \quad(\text { TLS-distance }) \\
& \mathfrak{D}(\mathcal{C}(\mu, \nu, r), a)=\left(D(\operatorname{seg}(\mu, \nu), a)^{2}-r^{2}\right)^{2} \quad \text { (algebraic distance) }
\end{aligned}
$$

The method

Multiple generalized circle detection problem:
$\underset{\mu, \nu \in \Delta^{k}, r \in(0, R]^{k}}{\operatorname{argmin}} F(\mu, \nu, r), \quad F(\mu, \nu, r)=\sum_{i=1}^{m} \min _{1 \leq j \leq k} \mathfrak{D}\left(\mathcal{C}_{j}\left(\mu_{j}, \nu_{j}, r_{j}\right), a^{i}\right)$
Possibilities:
(i) Application of global optimization algorithm DIRECT [1-2];
(ii) Modification of k-means algorithm for the case of \mathcal{C}-cluster-centers [3-4];

- Our proposal: (ii) with a very carefully chosen initial approximation
[1] D.R.Jones, C.D.Perttunen, B.E.Stuckman, Journal of Optimization Theory and Applications 79(1993)
[2] D.E.Finkel, DIRECT Optimization Algorithm User Guide (2003),
http://www4.ncsu.edu/~ctk/Finkel_Direct/DirectUserGuide_pdf.pdf
[3] T.Marošević, R.Scitovski, Croatian Operational Research Review 6(2015)
[4] R.Grbić, D.Grahovac, R.Scitovski, Pattern Recognition 60(2016)

Modification of the k-means algorithm for \mathcal{C}-cluster-centers (KMCC)

Algorithm 1

Step A: (Assignment step) For each set of mutually different generalized circles $\mathcal{C}_{1}\left(\mu_{1}, \nu_{1}, r_{1}\right), \ldots, \mathcal{C}_{k}\left(\mu_{k}, \nu_{k}, r_{k}\right)$, the data set \mathcal{A} should be partitioned into k disjoint nonempty clusters π_{1}, \ldots, π_{k} by using the minimal distance principle for $j=1, \ldots, k$

$$
\pi_{j}:=\left\{a \in \mathcal{A}: \mathfrak{D}\left(\mathcal{C}_{j}\left(\mu_{j}, \nu_{j}, r_{j}\right), a\right) \leq \mathfrak{D}\left(\mathcal{C}_{s}\left(\mu_{s}, \nu_{s}, r_{s}\right), a\right), s \neq j\right\}
$$

Step B: (Update step) For the given partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of the set \mathcal{A}, we should determine the corresponding \mathcal{C}-cluster-centers $\hat{\mathcal{C}}_{j}\left(\hat{\mu}_{j}, \hat{\nu}_{j}, \hat{r}_{j}\right), j=1, \ldots, k$ by solving the following GOPs:

$$
\underset{\mu, \nu \in \Delta, r \in[0, R]}{\operatorname{argmin}} \sum_{a \in \pi_{j}} \mathfrak{D}(\mathcal{C}(\mu, \nu, r), a), \quad j=1, \ldots, k
$$

Stopping criterion according to A.M.Bagirov, :
$\frac{F_{k-1}-F_{k}}{F_{1}}<\epsilon_{B}, \quad F_{k}=F\left(\mu^{(k)}, \nu^{(k)}, r^{(k)}\right), \quad \epsilon_{B}>0$
[1] A.M.Bagirov, Pattern Recognition, 2008

Searching for the best \mathcal{C}_{j}-cluster-center

$$
\underset{\mu, \nu \in \Delta, r \in[0, R]}{\operatorname{argmin}} \sum_{a \in \pi_{j}} \mathfrak{D}(\mathcal{C}(\mu, \nu, r), a)
$$

Estimation

- of the length of the line-segment (see [1]): $\delta_{j}=\frac{2}{\left|\pi_{j}\right|} \sum_{s \in \pi_{j}}\left|\left(a^{i}-c_{j}\right) \cdot v_{1}^{(j)}\right|$;
- of the line-segment $\operatorname{seg}\left(\mu_{j}, \nu_{j}\right) \approx\left[c_{j}-\frac{1}{2} \delta_{j} v_{1}^{(j)}, c_{j}+\frac{1}{2} \delta_{j} v_{1}^{(j)}\right]$;
- of the radius of the generalized circle $\mathcal{C}_{j}: r_{j} \approx \frac{1}{\left|\pi_{j}\right|} \sum_{s \in \pi_{j}}\left|\left(a^{i}-c_{j}\right) \cdot v_{2}^{(j)}\right|$; DIRECT-domain: $K_{\mu_{j}} \times K_{\nu_{j}} \times K_{r_{j}}$, where $K_{u}=\left\{x \in \mathbb{R}^{2}:\|u-x\|_{\infty} \leq \frac{1}{4} \delta_{j}\right\}, u \in\left\{\mu_{j}, \nu_{j}\right\}$ and $K_{r_{j}}=\left\{x \in \mathbb{R}:\left|x-r_{j}\right| \leq \frac{1}{4} \delta_{j}\right\}$

[1] J.C.R.Thomas, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 2011

The proposed method

Application of KMCC algorithm

- with a good enough initial partition (DBSCAN);
- with a good enough approximation of \mathcal{C}-cluster-centers (Incremental algorithm for line detection)

Application of KMCC algorithm by using a good initial partition

Estimation of the parameter ϵ

Application of DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm with parameters MinPts >2, and $\epsilon>0$

Estimation of the parameter ϵ
$\epsilon_{a}, a \in \mathcal{A}$ - radius of the circle containing MinPts >2 elements from \mathcal{A}
$\mathcal{R}=\left\{\epsilon_{a}: a \in \mathcal{A}\right\}$
$\epsilon=\mu+3 \sigma, \quad \mu=\operatorname{Mean}(\mathcal{R}), \quad \sigma^{2}=\frac{1}{m-1} \sum_{a \in \mathcal{A}}\left(\epsilon_{a}-\mu\right)^{2}$

(a) Sequence $\left(\epsilon_{a}\right)$

(b) Histogram of the sequence $\left(\epsilon_{a}\right)$

[1] M.Ester and H.P.Krieogel, J.Sander, 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996
[2] P.Viswanath, V.S.Babu, Pattern Recognition Letters 30(2009)
[3] Y.Zhu, K.M.Ting, M.J.Carman, Pattern Recognition 60(2016)

Searching for an optimal partition by using an initial partition

Algorithm 3 (KMCC by using a good initial partition)

Input: $\mathcal{A} \subset \mathbb{R}^{2} ; \quad$ MinPts;
1: Determine parameter ϵ in the previously described way;
2: By using the DBSCAN algorithm determine the initial partition $\Pi^{0}=\left\{\pi_{1}, \ldots, \pi_{\kappa}\right\}$;
3: By using the KMCC algorithm and the initial partition Π^{0} determine generalized circles $\mathcal{C}_{1}^{\star}, \ldots, \mathcal{C}_{\kappa}^{\star}$;
Output: $\left\{\mathcal{C}_{1}^{\star}, \ldots, \mathcal{C}_{\kappa}^{\star}\right\}$.

Example 1

$$
\text { (a) } \operatorname{DBSCAN}(\epsilon=.203)
$$

(b) Approximation

(c) DIRECT

(d) KMCC

$$
Q A D=(0.831,0.139,0.174,0.155)
$$

The question is, when does a calculated circle detect some generalized circle, and when not?

A new density-based index for recognizing the detected generalized circle

- $\mathcal{A} \subset \mathbb{R}^{2}$ - a set of data points coming from a number of generalized circles $\mathfrak{C}=\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right\}$ not known in advance
- $\Pi=\left\{\hat{\pi}_{1}, \ldots, \hat{\pi}_{\kappa}\right\}$ - an optimal κ-partition of the set \mathcal{A}
- $\hat{\mathcal{C}}_{1}, \ldots, \hat{\mathcal{C}}_{\kappa}$ - - -cluster-centers
- $\epsilon>0$ - parameter from DBSCAN-algorithm

$$
\begin{aligned}
& V_{j}=\left\{\mathfrak{D}_{1}\left(\hat{\mathcal{C}}_{j}, a\right): a \in \hat{\pi}_{j}\right\} \text { - set of LAD-distances } \\
& \operatorname{QAD}[j]:=\mu_{j}+2 \sigma_{j}, \mu_{j}=\operatorname{Mean}\left(V_{j}\right), \sigma_{j}^{2}=\frac{1}{\left|v_{j}\right|-1} \sum_{v_{j} \in V_{j}}\left(v_{j}-\mu_{j}\right)^{2} \text { - quantile absolute deviation }
\end{aligned}
$$

Due to the homogeneity property of the set \mathcal{A}, if $\operatorname{QAD}[j]<\epsilon$, then at least 95% of points of the cluster $\hat{\pi}_{j}$ have a smaller or equal LAD-distances from the circle $\hat{\mathcal{C}}_{j}$
If for some $j_{0} \in\{1, \ldots, \kappa\}, \operatorname{QAD}\left[j_{0}\right]>\epsilon$, the generalized circle $\hat{\mathcal{C}}_{j_{0}}$ has not been recognized as one of generalized circles from \mathfrak{C}
Density-Based Clustering index (DBC):

$$
\operatorname{DBC}(\kappa):=\max _{j=1, \ldots, \kappa} \operatorname{QAD}[j]
$$

Example

Application of KMCC algorithm by using good initial \mathcal{C}-cluster-centers

Let as assume that among the original generalized circles $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ there are some that touch or intersect.

Algorithm 4 (KMCC by using a good initial \mathcal{C}-cluster-centers)

Input: $\mathcal{A} \subset \mathbb{R}^{2}$;
1: According to (Nievergelt, 1994), determine the best TLS-line of the set \mathcal{A};
2: Solve GOP $\underset{\alpha \in[-\pi / 2, \pi / 2], \delta \in\left[0, \beta_{2}\right]}{\operatorname{argmin}} \Phi(\alpha, \delta), \quad \Phi(\alpha, \delta)=\sum_{i=1}^{m} \min \left\{d_{1}^{(i)}, \mathfrak{D}_{H}\left(\ell(\alpha, \delta), a^{i}\right)\right\}$, where $d_{1}^{(i)}=\frac{\left(u_{1} x_{i}+v_{1} y_{i}+z_{1}\right)^{2}}{u_{1}^{2}+v_{1}^{2}}$, and $\mathfrak{D}_{H}\left(\ell(\alpha, \delta), a^{i}\right)=\left(x_{i} \cos \alpha+y_{i} \sin \alpha-\delta\right)^{2}$ and $\ell(\alpha, \delta) \equiv x \cos \alpha+y \sin \alpha-\delta=0$ is line in the Hesse normal form. Denote the solution by $\mathcal{L}_{2} ;$
3: By using KMCL-algorithm determine lines $\hat{\mathcal{L}}_{1}, \hat{\mathcal{L}}_{2}$;
4: By using Algorithm 2 determine the corresponding \mathcal{C}-cluster-centers $\hat{\mathcal{C}_{1}}, \hat{\mathcal{C}_{2}}$;
5: By using the KMCC algorithm and initial centers $\hat{\mathcal{C}}_{1}, \hat{\mathcal{C}}_{2}$ determine generalized circles $\mathcal{C}_{1}^{\star}, \mathcal{C}_{2}^{\star}$; Output: $\left\{\mathcal{C}_{1}^{\star}, \mathcal{C}_{2}^{\star}\right\}$.
(a) Incremental alg.

(b) KMCL algorithm

(c) Application of Algorithm 2

(e) KMCC algorithm

Numerical experiments

Let us first choose integer $k \in\{2,3,4,5\}$ and real numbers $\gamma=2.25$ and $\delta=1.5$. Choose line-segments $\operatorname{seg}\left(\mu_{j}, \nu_{j}\right), j=1, \ldots, k$, such that $\mu_{j}, \nu_{j} \in[1.2,8.8]^{2} \subset \Delta$, $\Delta \subset[0,10] \times[0,10]$ and that the following holds:
(i) $\left\|\mu_{j}-\nu_{j}\right\|<\gamma$,
(ii) mutual distances between midpoints of line-segments are greater than δ,
(iii) distances between vertices of each segment and other segments are greater than δ.
(iv) radii of generalized circles $r_{j} \in \mathcal{U}(0.25,1.0)$.

On the generalized circle \mathcal{C}_{j}, depending on its length, we choose $m_{j}=\left\lceil 30\left|\mathcal{C}_{j}\right|\right\rceil$ uniformly distributed points and then to each point in the direction of the normal vector we add a random error from normal distribution with expectation 0 and the variance $\sigma^{2}=0.1$.

Result analysis for generalized circles

No. of circles	Generalized circles detected							CPU-time			
2	0	1	2	3	4	5	6	(DIRECT)	(KMCC)	Total	
3	0	0	0	0	0	0	0	.123	.102	0.225	
4	0	0	0	1	26	0	0	.253	.295	0.548	
5	0	0	1	0	0	11	1	.322	.311	0.633	

Construction of data in the neighborhood of a generalized circle

$m=30|\mathcal{C}|$ - number of uniformly distributed random points in the neighbourhood of the generalized circle $\mathcal{C}(\operatorname{seg}(\mu, \nu), r)$

- Random points in the neighbourhood of the circle $C\left(S_{0}, r\right), S_{0}=\frac{1}{2}(\mu+\nu)$ are translated into the left and the right edge of the generalized circle \mathcal{C};
- Random points in the neighbourhood of line-segments $\overline{A B}, \overline{C D}$ $T_{i}=\lambda_{i} A+\left(1-\lambda_{i}\right) B+\epsilon_{i}, \quad A=\mu-n_{0} r, B=\nu-n_{0} r$ $\lambda_{i} \in \mathcal{U}(0,1), \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$

