The width of a uniform distribution: estimation in additive error models

$\begin{array}{lll}\text { M. Benšić } & \text { K. Sabo } & \text { S. Hamedović }\end{array}$
${ }^{1}$ Department of Mathematics
University of Osijek
${ }^{2}$ Faculty of Metallurgy and Technology
University of Zenica

This work is supported by the Croatian Science Foundation through the research grant IP-2016-06-6545.

ISCCRO'18, Opatija, May 2018

Additive error model

$$
X=Y+\varepsilon
$$

- Typical assumptions
- Y and ε are independent
- error variable ε has a known $\operatorname{PDF} f_{\varepsilon}$
- an i.i.d. sample ($X_{1}, X_{2}, \ldots, X_{n}$) on X is available
- The goal: to estimate the unknown density f_{Y}
- Deconvolution: non-parametric methods

Deconvolution scheme

$$
X=Y+\varepsilon
$$

- Technique of characteristic functions

$$
\phi_{X}(t)=\phi_{Y}(t) \phi_{\varepsilon}(t)
$$

- Rough scheme
- estimate $\phi_{X}(t)$ by an empirical version $\hat{\phi}_{X}(t)$
- get estimate of $\phi_{Y}(t)$ as $\hat{\phi}_{Y}(t)=\frac{\hat{\phi}_{X}(t)}{\phi_{\varepsilon}(t)}$
- regularize $\hat{\phi}_{Y}(t)$ before applying inversion and get $\hat{f}_{Y}(x)$
- Deconvolution kernel density estimator

$$
\begin{aligned}
X=U+\sigma \varepsilon, U & \sim \mathcal{U}[-a, a], a>0, \sigma>0 \\
f_{U}(x) & =\frac{1}{2 a} I_{[-a, a]}(x)
\end{aligned}
$$

- ε symmetric absolutely continuous with CDF F and PDF f
- PDF of X (convolution of f_{U} and $f_{\sigma \varepsilon}$):

$$
f_{X}(x ; a, \sigma)=\frac{1}{2 a}\left(F\left(\frac{x+a}{\sigma}\right)-F\left(\frac{x-a}{\sigma}\right)\right)
$$

- To estimate:
- a (half-length of the uniform support)
- σ

Motivation

- Estimating the size of an object from a noisy image
- Example, a medical (RTG) image

Motivation

- PDF of $X=U+\varepsilon, U \sim \mathcal{U}[-1,1], \varepsilon \sim t_{3}(0, \sigma)$

Some references（1）

囦 Schneeweiss，H．（2004）．Estimating the endpoint of a uniform distribution under measurement errors．CEJOR 12， 221－231．
R－Benšić，M．，Sabo，K．（2007）．Estimating the width of a uniform distribution when data are measured with additive normal errors with known variance，Computational Statistics and Data Analysis，51，4731－4741
䍰 Benšić，M．，Sabo，K．（2007）．Border Estimation of a Two－dimensional Uniform Distribution if Data are Measured with Additive Error，Statistics－A Journal of Theoretical and Applied Statistics，41，311－319
國 Sabo K．，Benšić，M．（2009）．Border estimation of a disc observed with random errors solved in two steps，Journal of Computational and Applied Mathematics，229，16－26．

Some references (2)

國 Benšić, M., Sabo, K. (2010). Estimating a uniform distribution when data are measured with a normal additive error with unknown variance, Statistics - A Journal of Theoretical and Applied Statistics, 44, 235-246

E- Benšić, M., Sabo, K. (2016). Uniform distribution width estimation from data observed with Laplace additive error, Journal of the Korean Statistical Society
Renšić, M., Taler, P., Hamedović, S., Nyarko, E.K., Sabo, K. (2017). LeArEst: Length and Area Estimation from Data Measured with Additive Error, The R Journal, 9:2, pages 461-473.
E- Hamedović, S., Benšić, M., Sabo, K., Taler, P. (2017). Estimating the size of an object captured with error, CEJOR,

ML estimator

- Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a realization of $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
- log-likelihood function:

$$
l(a ; \mathbf{x})=-n \log (2 a)+\sum_{i=1}^{n} \log \left(F\left(\frac{x_{i}+a}{\sigma}\right)-F\left(\frac{x_{i}-a}{\sigma}\right)\right)
$$

- ML estimator of a

$$
\hat{a}_{M L}=\underset{a \in(0, \infty)}{\arg \max } l(a ; \mathbf{x})
$$

Some examples of error

- Normal error; $\varepsilon \sim \mathcal{N}(0,1) ; f_{\varepsilon}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
- corresponding ML estimator of a is CAE
- classical regularity conditions
- sensitive to outliers
- Laplace error; $\varepsilon \sim \mathcal{L}(0, \sqrt{2} / 2) ; f_{\varepsilon}(x)=\frac{\sqrt{2}}{2} e^{-2|x| / \sqrt{2}}$
- corresponding ML estimator of a is CAE
- nonstandard regularity conditions
- more robust

Asymptotic distribution

- So, in both cases

$$
\sqrt{n}\left(\hat{a}_{M L}-a_{0}\right) \longrightarrow \mathcal{N}\left(0, \frac{1}{I\left(a_{0}\right)}\right)
$$

- where

$$
I(a)=\frac{-1}{a^{2}}+\frac{1}{a \sigma^{2}} \int_{0}^{\infty} \frac{\left(f\left(\frac{x+a}{\sigma}\right)+f\left(\frac{x-a}{\sigma}\right)\right)^{2}}{F\left(\frac{x+a}{\sigma}\right)-F\left(\frac{x-a}{\sigma}\right)} d x
$$

- We can construct confidence intervals and tests

Confidence intervals

- Approximate confidence intervals (Cl) derived from asymptotic distribution of $\hat{a}_{M L}$:

$$
\left(\hat{a}_{M L}-\frac{z_{\alpha / 2}}{\sqrt{n I\left(\hat{a}_{M L}\right)}}, \hat{a}_{M L}+\frac{z_{\alpha / 2}}{\sqrt{n I\left(\hat{a}_{M L}\right)}}\right)
$$

- Likelihood ratio (LR) based confidence intervals:

$$
\lambda(\mathbf{X})=\frac{\sup _{a_{0}} L(a ; \mathbf{X})}{\sup _{(0, \infty)} L(a ; \mathbf{X})}=\frac{L\left(a_{0} ; \mathbf{X}\right)}{L\left(\hat{a}_{M L} ; \mathbf{X}\right)}
$$

- Under a_{0} (the true value of a):

$$
-2 \log \lambda(\mathbf{X}) \xrightarrow{D} \chi_{1}^{2}
$$

- LR.CI is the set:

$$
\left\{a \mid l\left(\hat{a}_{M L}\right)-l(a) \leq 0.5 \chi_{1}^{2}(1-\alpha)\right\}
$$

- For testing $H_{0}: a=a_{0}$ against $H_{1}: a \neq a_{0}$, critical regions:
- AD (Wald) approach $\left\{\mathbf{x}\left|\sqrt{n I\left(a_{0}\right)}\right| \hat{a}_{M L}-a_{0} \mid \geq z_{\alpha / 2}\right\}$ or

$$
\left\{\mathbf{x} \mid \chi_{W}^{2}:=n I\left(a_{0}\right)\left(\hat{a}_{M L}-a_{0}\right)^{2} \geq \chi_{1}^{2}(1-\alpha)\right\}
$$

- LR approach

$$
\left.\left\{\mathbf{x} \mid \chi_{L}^{2}:=-2 \log \lambda(\mathbf{x}) \geq \chi_{1}^{2}(1-\alpha)\right\}\right)
$$

- Approximate power

$$
\beta(a)=1-F\left(\chi_{1}^{2}(1-\alpha)\right)
$$

- $F(x)$ is the cdf of non-central χ^{2} distribution with 1 df and $\mathrm{ncp} n I\left(a_{0}\right)\left(a-a_{0}\right)^{2}$

General model

$$
\begin{gathered}
X=U+\sigma \varepsilon, U \sim \mathcal{U}[-a, a], a>0, \sigma>0 \\
f_{U}(x)=\frac{1}{2 a} I_{[-a, a]}(x),
\end{gathered}
$$

- We have conditions on error PDF for the MLE to be CAE
- Examples of errors with which the model is regular
- normal error
- logistic error
- student t error
- student t error - more robust model

The LeArEst R package

- LeArEst: Border and Area Estimation of Data Measured with Additive Error
- available on CRAN: https://cran.r-project.org/package=LeArEst
- estimation of the uniform support from the contaminated data
- constructing Cl and tests
- area estimation of an elliptical object

