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Model assumptions

Goal is to estimate parameters µ = (µ1, . . . , µk), σ = (σ1, . . . , σk),
µi ∈ Rd, σi > 0, of special case of Gaussian Mixture Model

f(x;µ,σ) =
1

k

k∑
i=1

fi(x;µi, σiId) =
1

k

k∑
i=1

n∏
j=1

fij(xj ;µi, σi),

where k is number of clusters, n is number of data in Rd known in
advance.

• Data within the same cluster is independent and equally distributed
from fij ∼ N (µi, σi)

• Further on, focus will be placed on estimation of the expectation µ,
due to fact that estimation of standard deviations σ follows trivially
from it.
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Main method idea

Main method idea
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• Data within each of k
clusters are
independent and
equally distributed from
fij ∼ N (µi, σiId)

• If we could detect data with upper property, it would be reasonable to
tag them as one of k clusters.

• Appropriate average would be approximated with sample mean.

• This idea is conduced in the following way:
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Main method idea

• Each of the n data is randomly (uniformly) joined to one of k clusters.

• Depending on such data labeling, we detect the data associated with
each of k cluster.

• Using Shapiro-Wilks test, we test the normality of data in each cluster
- due to the assumption of normality and independence in each
cluster, the normality of d-dimensional data is equivalent to the
normality of its margins.

• Cluster with the largest Shapiro-Wilks p-value is used to estimate one
of k centers.

• Upper cluster is updated by placing into it closest n/k data to the
estimated center.

• Last two steps are iterated until "convergence".

• The estimated cluster is removed from the data set and the
procedure is repeated.
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Main method idea

Problem!

• The likelihood that the data will be associated with the right cluster is
1/k.

• The likelihood that the random labeling of data will "hit" the entire

cluster is approximately
(
1
k

)n/k
.

•
(
1
k

)n/k
<< 1 in case of large number of clusters, i.e. data.

• The chances of success are increased by repeating the same
procedure a number of times.
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Step by step method explanation on the synthetic data in R2

We will demonstrate how the algorithm works in an example of 150 data
points in R2 coming from 4 clusters.

Figure: Genetated dataset in R2
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(a) Initially chosen 1. cluster (b) 1. cluster after iterating cluster -
center 10 times

Figure: Estimation of first center
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The cluster specified in the previous iteration is removed from the data set

(a) Initially chosen 2. cluster (b) 2. cluster after iterating cluster -
center 10 times

Figure: Estimation of second center
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The cluster specified in the previous iteration is removed from the data set

(a) Initially chosen 3. cluster (b) 3. cluster after iterating cluster -
center 10 times

Figure: Estimation of third center
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The cluster specified in the previous iteration is removed from the data set

(a) The remaining data form the last
cluster

(b) Initial data set with estimated centers
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• The advantage of the method is manifested in its speed and precision
on high-dimensional data sets, large data sets, and clusters with a
large number of clusters.

• Normality assumption can be weakened to an large class of
symmetric distribution.

• The estimation of centers obtained by the method can also be used
as an initial approximation of the known k-Means algorithm to
increase precision.

• The problem of estimating cluster centers can also be seen as a
global minimization problem with the goal function

F (µ1, . . . , µk;x) =

n∑
i=1

min
1≤j≤k

d(xi, µj).
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Comparison of the "InitialEM" method with some known
clustering algorithms

Table: Synthetic data in R3, n = 20000, k = 5

Method Time(s) Goal function value

InitialEm 6.0625 59647.9
InitialEm + K-means 21.0469 59639.9

Fdirect 747.609 59639.9
Zha - -

Zha+K-means - -
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Table: Synthetic data in R15, n = 10000, k = 2

Method Time(s) Goal function value

InitialEm 4.39063 37565.9
InitialEm + K-means 9.67188 37564.5

Fdirect 61.4531 37564.5
Zha 5.32813 37564.5

Zha+K-means 6.71875 37564.5
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Testing method on IRIS data set

• A typical test case for many statistical classification techniques in
machine learning such as support vector machines.

• The data set contains a set of 150 records under 4 attributes - petal
and sepal length and width .

• The quality of the classification is measured by the "Adjusted
Random Index" (AdjRand).

Table: The value of AdjRandIndex depending on the classification method

Method InitialEm Fdirect Zha+K-means

AdjRand 0.7142 0.686081 0.686081
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