Euro-Global Conference on Food Science, Agronomy and Technology 20th and 22nd September 2018, Rome, Italy # The Application Of Adsorption Isotherms With Proper Fitting To Interpret Polyphenol Bioaccessibility In Vitro Lidija Jakobek1, Petra Matić1, Andrew R. Barron2 ¹Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Department of Applied Chemistry and Ecolog ²Yale University, Department of Statistics and Data Science # INTRODUCTION Bioaccessibility of polyphenols describes their accessibility for absorption in the digestive tract. Dietary fibers, together with some other food components, can affect bioaccessibility since they can interact with polyphenols. One of the ways of studying these complex reactions in vitro is to study the adsorption of polyphenols onto dietary fiber. The experimental results (the amount of polyphenols adsorbed onto dietary fiber q_e , and the amount non-adsorbed c_e) can be modelled with adsorption isotherm equations. Parameters obtained from these equations can help in the attempt to interpret the adsorption process and by that to interpret bioaccessibility in vitro. But, adsorption isotherms require proper fitting to lower the error of models and to obtained correct parameters of adsorption equations. The aim of this work was to study the adsorption between apple polyphenols and β-glucan, to model the experimental data with Langmuir, Dubinin-Radushkevich, and Hill adsorption isotherms with improved fitting, and to use corrected parameters from adsorption isotherms to interpret the adsorption process. #### MATERIALS AND METHODS Polyphenols were extracted from the flesh and peel of apples and adsorbed onto β-glucan (until the adsorption reached equilibrium). The amount of total free polyphenols before and after adsorption were determined by using the Folin-Ciocalteu method. The qe (adsorption capacity, mg g-1) and ce (polyphenol concentration in equilibrium, mg l-1) were modelled with equations of adsorption isotherms. Experimental data fitting $(q_e \text{ and } c_e)$ was conducted by using improved minimization of the sum of squares errors. Langmuir isotherm Dubinin-Radushkevich isotherm $\varepsilon = RT \ln \left(\frac{c_S}{c_s}\right)$ $: \frac{q_m c_e}{\frac{1}{K_L} + c_e}$ - Polany potential concentration according to Dubinin-Radushkevich - the mean free energy of adsorption $[n_n] > 1$ positively cooperativity $[n_n] > 1$ positively cooperative - bonding, n_{H}
1 negatively cooperative bonding, n_{H} =1 noncooperative (independent) ### **RESULTS AND DISCUSSION** Adsorption isotherms (examples, Figure 1 to 4) fitted according to the new, improved fitting, showed lower standard error (Table 1) and can be considered more accurate and precise for the interpretation of adsorption. According to the new parameters (Table 1), peel polyphenols showed higher theoretical, maximal adsorption capacity (q_m) and theoretical capacity of saturation (q_d) . Parameter n_H points to the positively cooperative bonding for wild apple polyphenols and negatively cooperative in bonding for all other polyphenols. Parameters describing energy of adsorption showed that the bonds between peel polyphenols and β -glucan might be physical, and between flesh polyphenols and β -glucan, it might be chemical. Figure 1. Langmuir adsorption isotherm of wild apple peel polyphenols adsorbed onto β-glucan Figure 2. Dubinin-Radushkevich adsorption isotherm of wild apple peel polyphenols adsorbed onto β-glucan 9000 Figure 3. Hill adsorption isotherm of wild apple peel polyphenols adsorbed onto β-glucan Figure 4. Hill adsorption isotherm of wild apple flesh polyphenols adsorbed onto β-glucan Table 1. Coefficients of Langmuir, Dubinin-Radushkevich and Hill adsorption isotherms obtained with standard fit and improved fit This work has been fully supported by Croatian Science foundation under the project number IP 2016 - 06 - 6777 and IP 2016-06-6545 | Adsorption isotherm | | Apple varieties - | | | | | | | | | |----------------------|----------------|----------------------------------|------------------|--------------|------------------|-----------------|-----------------------|--------------|------------------------|--------------| | | | | Wild apple peel | | Wild apple flesh | | Slavonska srčika peel | | Slavonska srčika flesh | | | | | | Standard
fit | Improved fit | Standard fit | Improved
fit | Standard fit | Improved fit | Standard fit | Improved fit | | Langmuir | q_m | mg g-1 | 11900 | 11300 | 3870 | 3540 | 8350 | 8470 | 5850 | 2690 | | | KL | I mg-1 | 0.0229 | 0.0266 | 0.149 | 0.341 | 0.018 | 0.017 | 0.0457 | 132.98 | | | SSE | | 543 | 342 | 1340 | 637.3 | 643 | 569.8 | 1530 | 465.4 | | | | | | | | | | | | | | Dubinin Radushkevich | q_s | mg g-1 | 7510 | 7540 | 3640 | 3690 | 6700 | 6760 | 5000 | 2770 | | | β | mol ² J ⁻² | $4.727\ 10^{-8}$ | 4.596 10-8 | 1.1 10-8 | 0.4 10-8 | 2.5 10-8 | 2.64 10-8 | 1.49 10-8 | 0.11 10-8 | | | Cs | mg I-1 | 88.5 | 90.7 | 134 | 300 | 300 | 300 | 300 | 300 | | | E | J mol ⁻¹ | 3252.4 | 3298.2 | 6732.8 | 10338 | 4463.2 | 4351.9 | 5799.8 | 21859.5 | | | SSE | | 3300 | 247.3 | 1481 | 646.9 | 2419 | 653.9 | 167 | 495 | | | | | | | | | | | | | | Hill | q_m | mg g-1 | 8110 | 8070 | 4500 | 6940 | 13600 | 12000 | | | | | n _H | | 1.79 | 1.82 | 0.68 | 0.289 | 0.613 | 0.6697 | | | | | K _D | | 211.3 | 228.99 | 4.496 | 3.27 | 27.4 | 28.92 | | | | | SSE | | 2232 | 237.3 | 1513 | 622.5 | 1667 | 607.5 | | | # CONCLUSION New, more accurate fitting allows more reliable insight into the bonding between polyphenols and dietary fibers and accordingly into the bioaccessibility explanation, in vitro.