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Problem statement

Real-world images We consider a one ellipse and a multiple ellipse detection
problem on the basis of data points:

A = {ai = (xi, yi)
T : i = 1, . . . , m} ⊂ ∆,

∆ = [a, b]× [c, d] ⊂ R
2, coming from one or several ellipses

not known in advance.

Some methods known for solving this problem in the litera-
ture are:

• Hough transform (Mukhopadhyay and Chaudhuri, 2015)

• Center based clustering (Marošević and Scitovski, 2015;
Moshtaghi et al., 2011; Morales-Esteban et al., 2014)

• Geometric methods (Isack and Boykov, 2012; Prasad et
al., 2013; Akinlar and Topal (2013))

The EDCircles method proposed in Akinlar and Topal
(2013) can be used in real-time applications.

Multiple Ellipse Detection problem can be formu-
lated as a global optimization problem:

argmin
p,q,ξ,η,ϑ

F (p, q, ξ, η, ϑ),

F (p, q, ξ, η, ϑ) =

m
∑

i=1

min
1≤j≤k

D(ai, Ej(pj, qj, ξj, ηj, ϑj)),

whereD is some distance - like function defining the distance
from a point a ∈ A to the ellipse Ej ≡ Ej(pj, qj, ξj, ηj, ϑj)

Ej(pj, qj, ξj, ηj, ϑj) =

{[

x(t)
y(t)

]

, t ∈ [0, 2π]

}

, j = 1, . . . , k,

where
[

x(t)
y(t)

]

=

[

pj
qj

]

+ U (ϑ)

[

ξj cos t
ηj sin t

]

, t ∈ [0, 2π],

Sj = (pj, qj)
T are the centers, ξj, ηj > 0 are the lengths of

semiaxes and ϑj are the angles, U (ϑ) =

[

cosϑ − sinϑ
sinϑ cosϑ

]

.

The objective function F is nonconvex and nondifferentiable
and this problem represents a complex global optimization
problem.

Some assumptions about the data

A subset of data points π(E) ⊂ A coming from some ellipse
E satisfies the homogeneity property, i.e. we assume that the
set π(E) is uniformly scattered around the ellipse E, and the
number

ρ(π) = |π(E)|
|E| ,

where |E| is the length of the ellipse E, will be called the
local density of the data point set π(E).
Using the parameters from the DBSCANmethod (Ester et al.,
1996), the lower bound of the local density can be approxi-
mated in the following way:

MinPts
2ǫ(A) / ρ(A),

where MinPts = ⌊log |A|⌋ (Scitovski and Sabo, 2020),
ǫ(A) is the 99.5% quantile of the set {ǫa : a ∈ A} and ǫa > 0
is a radius of the smallest disc centered at a and containing
at least MinPts elements of the set A.

One Ellipse Detection problem (OED)

An ellipse as a Mahalanobis circle

An ellipse E(S, ξ, η, ϑ) can be written as a Mahalanobis circle:

E(S, r,Σ) = {u ∈ R
2 : dM(S, u; Σ) = r2},

where
dM(u, v; Σ) :=

√
det Σ (u− v)TΣ−1(u− v) = ‖u− v‖2Σ,

Σ = (σij) ∈ R
2×2 is a positive definite matrix with eigenvalues ξ2, η2 and

r2 =
√
det Σ = ξη

diag(ξ2, η2) = U
(

r2√
detΣ

Σ
)

UT , U (ϑ) =

[

cosϑ − sinϑ
sinϑ cosϑ

]

, ϑ = 1
2 arctan

2σ12
σ11−σ22

.

The algebraic distance-like function from the point a ∈ R
2 to the ellipse E is

defined as (Morales-Esteban et al., 2014):

D(a,E) = (‖S − a‖2Σ − r2)2.

One Ellipse Detection problem (OED) can be formulated as a global optimization
problem:

argmin
S,r,Σ

F (S, r,Σ), F (S, r,Σ) =
m
∑

i=1

D(ai, E(S, r,Σ)). (1)

Method 1 for OED: the local optimization method

1) According to (Scitovski and Sabo, 2020), define an initial approximation:

S0 = Mean[A], Σ0 =
1
m

∑

a∈A
(S0 − a)(S0 − a)T

and r0 =
1
m

∑

a∈A
‖S0 − a‖2Σ0

, since

∑

a∈A

(

‖S0 − a‖2Σ0
− r2

)2 ≥
∑

a∈A

(

‖S0 − a‖2Σ0
− 1

m

∑

a∈A
‖S0 − a‖2Σ0

)2

.

2) Apply some local optimization methods (Newton or Quasi-Newton) to problem
(1).

Method 2 for OED: using the RANSAC and the DBSCAN method

1) Using the main idea of the RANSAC-method (Fischler and Bolles (1981)), ran-
domly choose 5 non-collinear points (x1, y1)

T , . . . , (x5, y5)
T ∈ A. Then there

exists a unique ellipse E(S, r,Σ) that contains these points. If E ⊂ ∆, we
assume that we have found an acceptable candidate for the ellipse.

2) In the ǫ(A)-neighborhood of the acceptable ellipse determine the number of
points from the set A.

3) Repeat the procedure N times (say, 10) and keep the ellipse Ê for which the
corresponding set of points is the largest.

4) Ellipse Ê(Ŝ, r̂, Σ̂), is a good initial approximation for the ellipse which will be
searched for by solving local optimization problem (1).

Multiple Ellipse Detection problem

Method description
1) Using the main idea of the RANSAC-method (Fischler and Bolles (1981)), ran-

domly choose 5 non-collinear points from the set A. The ellipse E(S, r,Σ)
determined on the basis of these points and contained in rectangle ∆ is an
acceptable candidate for the searched ellipse. By repeating the procedure, we
assume that we have found N candidates.

2) The best ellipse Ê has the largest local density of points in its ǫ(A)-
neighborhood. The cluster π̂ := {a ∈ A : D(a, Ê) < ǫ(A)} ⊂ A of points
from this ǫ(A)-neighborhood should be dropped from the set A and the proce-
dure should be repeated on the rest of the set A \ π̂.

3) Repeat the whole procedure until the number of the remaining sets becomes
smaller than some number given in advance (for example, 5MinPts). In that
way, we obtain κ ellipses Êj, j = 1, . . . , κ.

4) Determine the local density ρ̂j(Êj) =
|π̂j|
|Êj|

for each pair (π̂j, Êj), where |π̂j| is
the number of points in the cluster π̂j, and |Êj| is the length (circumference)

of the ellipse Êj which can be estimated using the well-known Ramanujan
approximation

|Êj| ≈ π(ξ̂j + η̂j)
(

1 + 3h
10+

√
4−3h

)

,

where h =
(ξ̂j−η̂j)

2

(ξ̂j+η̂j)2
. Using the lower bound for the local density of the set A,

the ellipses, for which
ρ̂j(Êj) <

MinPts
2ǫ(A) ,

will be dropped.

5) We apply the Adaptive Mahalanobis k-means algorithm to all remaining ellipses
(Grbić et al., 2016). The algorithm can be described in the following two steps
which are repeated iteratively:

Step A: (Assignment step) For each set of mutually different M-circles E1(S1, r1,Σ1),
. . . , Ek(Sk, rk,Σk), the set A should be divided into k disjoint nonempty
clusters π1, . . . , πk by using the minimal distance principle;

Step B: (Update step) Given a partition Π{π1, . . . , πk} of the set A, one can de-
fine the corresponding M-circle-centers Êj(Ŝj, r̂j, Σ̂j) j = 1, . . . , k by using
Method 1 or Method 2 for OED
Set Ej(Sj, rj,Σj) = Êj(Ŝj, r̂j, Σ̂j) for j = 1, . . . , k;

Numerical example

Example Let us consider the data point set A shown in Fig.(a) which comes
from four ellipses. The number of points is |A| = 669 and DBSCAN-parameters
are MinPts = 6 and ǫ(A) = 0.284. The lower bound for the local density is
in that case 10.6.
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(a) Att.61: ρ(π1) = 22.6

2 4 6 8 10

2

4

6

8

10

(b) Att.96: ρ(π2) = 17.6
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(c) Att.103: ρ(π3) = 21.0
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(d) Att.167: ρ(π4) = 17.1
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(e) Att.17: ρ(π5) = 9.6
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(f) Att.5: ρ(π6) = 2, 4
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(g) k-means algorithm

Conclusions and further research

Solving the multiple ellipse detection problem is important in many applications.
We considered a one ellipse and a multiple ellipse detection problem on the basis
of a data point set coming from a number of ellipses with noisy edges in the plane.
We supposed that the subset of data points coming from some ellipse satisfies the
homogeneity property. For that situation, a method based on the RANSAC method
is proposed, whereby the DBSCAN parameters MinPts and ǫ play a significantly
important role.
It is important to note that our method does not require the use of indexes for
recognizing the most appropriate partition with ellipse-cluster-centers. This is the
basic advantage of this method in comparison to the EDCircles method given in
Akinlar and Topal (2013) and the method given in Grbić et al. (2016). Unlike
our method, EDCircles does not recognize an ellipse with semi-axes (ξ, η), ξ

η
≥ 4

and cannot detect a single ellipse with a clear edge if its shape departs significantly
from a circular shape. However, our method requires more computing time than
EDCircles.
The method proposed in our paper could be applied to the case of other geometrical
objects too, but its application is also possible in 3D.
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