STATISTICAL FITTING OF ADSORPTION ISOTHERMS

Andrew R. Barron, Lidija Jakobek Barron, Mirta Benšić, Petra Matić

A. R. Barron — Department of Statistics and Data Science, Yale University

Lidija Jakobek Barron, Mirta Benšić, Petra Matić- University of Osijek

Zagreb, Jun 2019.

This work was supported by the Croatian Science Foundation research grants IP-2016-06-6545 and IP-2016-06-6777

- The aim of the experiment to study the influence of dietary fiber on polyphenol bioaccessibility
- Bioaccessibility the amount of polyphenols that are actually accessible for absorption in the digestive tract
- Dietary fibers are resistant to digestion and absorption in the human small intestine.
- They have the potential to interact with polyphenols in the digestive tract, to "trap" and "carry" them unchanged to the lower parts of the digestive tract and affect their bioaccessibility.
- The influence of dietary fibers on polyphenol bioaccessibility can be studied by studying the adsorption process between fibers and polyphenols.
- Adsorption proces in a model: polyphenol β-glucan (a dietary fiber found in cereals — barley and oats).

- Particles (an initial concentration) are introduced into a medium (liquid or gaseous at a particular temperature) with an adsorbent present.
- After sufficient time to allow an equilibrium of adsorption to be reached, concentration not adsorbed is observed.
- From the initial concentration and the concentration not adsorbed, the amount adsorbed is calculated.
- A key aim is to know how the amount adsorbed is related to the concentration not adsorbed in the medium for a specific temperature.

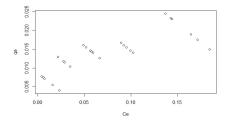
- An initial concentration M(mg/l) is set to one of various specified experimental values.
- After equilibrium is reached the remaining concentration C_e in mg/I is measured. It depends on M.
- From C_e , the amount adsorbed q_e (in mg per g of adsorbent) is determined using the principle of conservation of mass by the material balance equation

$$q_e = (M - C_e)/\gamma,$$

where γ is the amount of adsorbent in g/I.

• $q_e \leftrightarrow C_e???$

- Observed $(C_{e,i}, q_{e,i}), i = 1, ..., n (n number of trials)$
- Plot reveals the experimental structure groups of collinear points (one group for each initial condition M) with slope $-1/\gamma$



Equilibrium equations

Equilibrium equations have been most frequently employed to interpret adsorption data.

 q_e – amount adsorbed

$$C_e$$
 – concentration not adsorbed

• Freundlich model:

$$q_e = K(C_e)^a$$

• Langmuir model:

$$q_e = Q rac{C_e}{K_L + C_e}$$

• Dubinin-Radushkevich model:

$$q_e = Q_s e^{-a(\log rac{C_s}{C_e})^2}$$

 $(K, a), (K_L, Q)$ and (Q_s, C_s) — constants for a given adsorbate and adsorbent at a particular temperature.

• Data
$$(\mathcal{C}_{e,i}, q_{e,i}), \ i=1,\ldots,n$$

• Model: $q_e = h(C_e, a)$, a unknown vector parameter

Nonlinear least squares — parameter value \hat{a} minimizes the (weighted) sum of squares of error

$$\sum_{i=1}^n w_i(q_{e,i}-h(C_{e,i},\boldsymbol{a}))^2.$$

Estimation - standard procedure - problem

• Structural relationships:

$$q_e = h(C_e, oldsymbol{a})$$
 $q_e = (M - C_e)/\gamma$

Measurements:

$$C_{e,i} = C_e + \varepsilon_i$$
$$q_{e,i} = (M - C_{e,i})/\gamma = (M - C_e - \varepsilon_i)/\gamma = q_e + \nu_i$$

• From the structural form we have

$$q_{e,i} = h(C_e, \boldsymbol{a}) + \nu_i$$

$$q_{e,i} = h(C_{e,i} - \varepsilon_i, \boldsymbol{a}) + \nu_i$$

- joint variability of $C_{e,i}$ and $q_{e,i}$, $E(\nu_i C_{e,i}) \neq 0$???
- endogenity problem with inconsistency even in the linear LS

- Experiments vary a precisely controlled choice of an initial mass *M*: m_1, \ldots, m_n
- C_e is related to M
- Rearrange the models to express $q_e = f(M, a)$ as a function of the original input M by solving the material balance equation

$$q_e - (M - h^{-1}(q_e))/\gamma = 0$$

• Now we have a classical nonlinear regression but with *M* as a predictor.

$$q_{e,i} = f(m_i, \boldsymbol{a}) + \epsilon_i$$

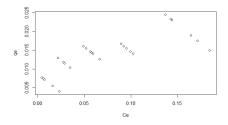
- For Langmuir model, f can be derived explicitly
- Otherwise, f is implicitly given by the equation

$$q_e - (M - h^{-1}(q_e))/\gamma = 0$$

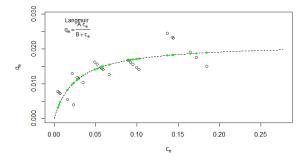
 Computation in standard statistical packages — problem if we don't have an explicit expression for f (estimations, se, CI)

Experiment and data

- Data: initial mass *M* at 5 levels: 25,50,75,100,150
- At each mass level, 6 experiments
- Langmuir model



Standard procedure LS



The fitted (C_e, q_e) does not correspond to the experimentally given initial mass.

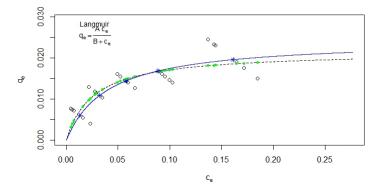
• Define f(M, a) as a solution of the equation

$$q_e - (M - h^{-1}(q_e, \boldsymbol{a}))/\gamma = 0$$

• Minimize

$$S(\boldsymbol{a}) = \sum_{i=1}^{n} w_i (q_{e,i} - f(m_i, \boldsymbol{a}))^2.$$

Improved procedure LS



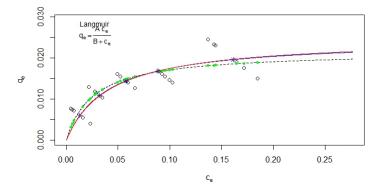
- The estimator is asymptotically normal.
- We computed the asymptotic variance and bias.
- Variance:

$$\left[\sum_{i=1}^{n} w_i \nabla f(M_i, \boldsymbol{a}) \nabla f(M_i, \boldsymbol{a})^{\tau}\right]^{-1} = \left[\sum_{i=1}^{n} w_i \frac{1}{(1 + \frac{1}{\gamma} \frac{\partial h}{\partial Ce}(Ce_i))^2} \nabla h(Ce_i, \boldsymbol{a}) \nabla h(Ce_i, \boldsymbol{a})^{\tau}\right]^{-1}$$

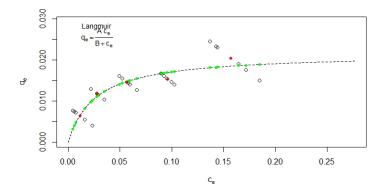
1

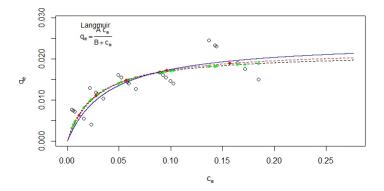
• Bias correction — Huge expression with (mostly) small impact.

Bias corrected improved procedure LS



- Repeated experiments for the chosen levels of initial mass *M*.
- Use average values for C_e and q_e at each level and standard LS procedure.
- Slightly improves the naive fit.
- Asymptotically OK.





estimator	Standard	From Means	Improved
sd residuals	0.00295	0.00224	0.00211

estimator	Standard	From Means	Improved	Im. Bias Corr.
A	0.0216	0.0224	0.0245	0.0248
		(0.00226)	(0.00232)	(0.00232)
В	0.0261	0.0293	0.0401	0.0423
		(0.0118)	(0.0125)	(0.0125)

Langmuir model

A = 0.02, B = 0.03M = (25, 50, 75, 100, 150)

mass equation: $580 * C_e + 2900 * q_e = M$ C_e computed from M:

$$580 * C_e + 2900 * \frac{AC_e}{B + C_e} = M$$

 $C_e = (0.01294334, 0.03347204, 0.06195567, 0.09621245, 0.17338687)$ Data — 6 data for each M level, C_e plus normal errors, sd = 0.008110000 replications

A = 0.02				
estimator	Standard A	From Means A	Improved A	Im. Bias Corr. A
mean	0.019369	0.020241	0.020212	0.020069
se	0.001496	0.001555	0.001384	0.001286

B = 0.03

estimator	Standard B	From Means B	Improved B	Im. Bias Corr. B
mean	0.028098	0.031941	0.031481	0.030538
se	0.008872	0.009385	0.008288	0.007537

- Based on the estimator's asymptotic normality and computed standard errors.
- For fixed *M*, confidence intervals can be calculated for C_e (let say I_{C_e}) and q_e (I_{q_e}).
- Each pair (C_e, q_e) should satisfy the mass equation.
- Using I_{C_e} and I_{q_e} , a confidence segment at the mass equation line can be detected for each M.

Improved procedure LS with confidence bands

