Estimating the width of uniform distribution under measurement errors

Mirta Benšić, Kristian Sabo, Safet Hamedović

M. Benšić, K. Sabo - Department of Mathematics, University of Osijek
S. Hamedović - Faculty of Metallurgy and Technology, University of Zenica

Firenze, Jun 2019

This work is supported by the Croatian Science Foundation through research grants IP-2016-06-6545

Convolution model

- $X=U+\varepsilon$
- $U \mathrm{i} \varepsilon$ independent, random
- U uniform, ε normal error

Example: $U \sim \mathcal{U}(-a, a), \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
f_{X}(x ; a, \sigma)=\frac{1}{2 a}\left(F_{\varepsilon}\left(\frac{x+a}{\sigma}\right)-F_{\varepsilon}\left(\frac{x-a}{\sigma}\right)\right)
$$

Applications in metrology

- Usually assumed that ε is normally distributed.
- Known as the Flatten-Gaussian distribution
- The basis for calculating the measurement uncertainty
- Blázquez, J., García-Berrocal, A., Montalvo, C., Balbás, M. (2008). The coverage factor in a Flatten-Gaussian distribution, Metrologia 45, 503-506.
- Fotowicz, P. (2014). Methods for calculating the coverage interval based on the Flatten-Gaussian distribution. Measurement, 55, 272-275

Applications in geology

- Cox, A.V., Dalrymple, G.B. (1967). Statistical analysis of geomagnetic reversal data and the precision of potassium-argon dating, J Geophys Res 72:2603-2614
- Agterberg, F.P. (1988). Quality of time scales - a statistical appraisal. In: Merriam, D.F. (ed) Current trends in geomathematics, Plenum, New York, pp 57-103
- Agterberg, F. P. (2014). Geomathematics: Theoretical foundations, applications and future developments. Quantitative geology and geostatistics (Vol. 18), Springer, Heidelberg.
- Ex. - for estimating the age of stage boundaries.

Applications in electrical engineering

- For modeling the transmission losses data Tolić, I., K. Miličević, N. Šuvak, I. Biondić (2017). Non-linear Least Squares and Maximum Likelihood Estimation of Probability Density Function of Cross-Border Transmission Losses, IEEE Transactions on Power Systems 33/2 (2018), 2230-2238

Fitting a line segment to noisy data

- Uniform latent variable and normal noise Davidov, O., Goldenshluger, A. (2004). Fitting a line segment to noisy data. Journal of Statistical Planing and Inference 119, 191-206.
- Linear structural relationship

Chan, N.N. (1982). Linear structural relationships with unknown error variances, Biometrika, 69, No.1, 277-279

Estimating the size of an object in a noisy image

- M. B., K. Sabo, Border estimation of a Two-dimensional Uniform Distribution if Data are Measured with Additive Error, Statistics, 41 (2007), 4, 311-319.
- K. Sabo, M. B., Border estimation of a disc observed with random errors solved in two steps, Journal of Computational and Applied Mathematics, 229 (2009)

Black fungi colonies

Garlipp, T., Müller, C. H., Detection of linear and circular shapes in image analysis, Computational Statistics \& Data Analysis 51 (2006), 1479-1490

R package

https : //cran.r - project.org/web/packages/LeArEst/

- M. Benšić, P. Taler, S. Hamedović, E.K. Nyarko, K. Sabo, LeArEst: Length and Area Estimation from Data Measured with Additive Error, The R Journal 9/2 (2017), 461-473
- Includes web application for estimating the size of an object from a noisy image
- Gaussian error model - tested in simulations

LeArEst

(i) localhost:5656/ocpu/library/LeArEst/www/index_esttest.htral

Length Estimator

LeArEst

LeArEst

Data successfully prepared.
Histogram of data

Click for raw R output

LeArEst

```
0. (i) localhost:5656/ocpu/library/LeArEst/www/index_esttest.htm
```


Length Estimator

Levels of grey. 8, Box size. 10. Line thickness. 5
Error distribution: laplace, Error standard deviation: ML, Confidence level: 0.95
Length. 311.28 pixel width (52.85% of the image wiath). Green line length. 428.12 pixel width Standard deviation: 18.24 (ML estimated)
Method. Asymptotic distribution of LR statistic
Conficience interval: $(310.04,312.58)$
Click for raw R output

Detection of the circle edge in a noisy image

Image of the can, $r=51.5 \mathrm{~mm}$, area $=8332.3 \mathrm{~mm}^{2}$

Detection of the circle edge in a noisy image

- Hough transformation
P. V. Hough, Method and means for recognizing complex patterns.

Patent U.S. Patent No. 3,069,654, 1962.
R. D. Duda i P. E. Hart, Use ofthe Hough transform to detectlinesand curvesin pictures, Commun. ACM, 15, br. 1, 1972.
A. Rosenfeld, Picture processing by computer, ACM Computing Surveys (CSUR), svez. 1, br. 3, pp. 147-176, 1969.

- EDCirlces
C. Akinlar i C. Topal, EDCircles: A real-time circle detector with a false detection control, Pattern Recognition, 46, br. 3, pp. 725-740, 2013.
- Fornaciari
M. Fornaciari, A. Prati i R. Cucchiara, A fast and effective ellipse detector for embedded vision applications, Pattern Recognition, 47, br. 11, pp. 3693-3708, 2017.

Simulation results - can example

- $r=51.5 \mathrm{~mm}$, area $=8332.3 \mathrm{~mm}^{2}$
- 20 simulations for each sd
- RMSE for area estimation

$s d / r(\%)$	LeArEst	Hough	EDCircles	Fornaciari
0	229	1858	681	
5	587	1353	723	
13	523	1365	852	
26	243	2315	659	
39	289	1955	755	

- For 1000 simulations we have similar results but withouth EDCircles.

Problem with real images

Laplace error model - improvement

General one-dimensional model

- $X=U+\sigma \varepsilon$
- $f_{U}(t)=\frac{1}{2 a} I_{[-a, a]}(t)$
- ε absolutely continuous random variable with distribution F_{ε} and density function f_{ε}, which is even.

$$
\Rightarrow \quad f_{X}(t)=\frac{1}{2 a}\left[F_{\varepsilon}\left(\frac{a+t}{\sigma}\right)-F_{\varepsilon}\left(\frac{a-t}{\sigma}\right)\right]
$$

- $\varepsilon \sim \mathcal{N}(0,1)$

$$
f_{X}(t \mid a, \sigma)=\frac{1}{2 a \sqrt{2 \pi}} \int_{-\frac{a+t}{\sigma}}^{\frac{a-t}{\sigma}} e^{-\frac{u^{2}}{2}} d u
$$

- $\varepsilon \sim \mathcal{L}(\lambda), \sigma=1$

$$
f_{X}(t \mid a, \lambda)= \begin{cases}\frac{1}{2 a} \sinh \frac{a}{\lambda} e^{-\frac{|t|}{\lambda}}, & a \in(0,|t|] \\ \frac{1}{2 a}\left(1-e^{-\frac{a}{\lambda}} \cosh \frac{t}{\lambda}\right), & a \in(|t|, \infty)\end{cases}
$$

General one-dimensional model - density

red - normal error
blue - Student's $t(1)$ error

Maximum likelihood estimation

- Data $\left(x_{1}, \ldots, x_{n}\right)$, log-likelihood:

$$
I(a)=-n \log 2 a+\log \sum_{i=1}^{n}\left[F_{\varepsilon}\left(\frac{x_{i}+a}{\sigma}\right)-F_{\varepsilon}\left(\frac{x_{i}-a}{\sigma}\right)\right]
$$

- Differentiable function (model with absolutely continuous error).
- Optimization should be easy with a good initial approximation that is not difficult to recognize in applications.
- Regularity conditions???

MLE - regularity conditions

- Easy to check sufficient conditions
- S. Hamedović, MB, K. Sabo, Estimating the width of a uniform distribution under symmetric measurement errors, submitted 2019
- Examples: Normal, Logistic, Student's $t(\nu), \nu \geq 1$
- Student's distribution with small degrees of freedom could be a particularly good choice for the error. (We can adjust the number of degrees of freedom to the amount of outliers in the data.)

General regular model

ML confidence intervals

Fisher information

$$
\begin{gathered}
I(a)=\frac{-1}{a^{2}}+\frac{1}{2 a \sigma^{2}} \int_{-\infty}^{\infty} \frac{\left(f_{\varepsilon}\left(\frac{x+a}{\sigma}\right)+f_{\varepsilon}\left(\frac{x-a}{\sigma}\right)\right)^{2}}{F_{\varepsilon}\left(\frac{x+a}{\sigma}\right)-F_{\varepsilon}\left(\frac{x-a}{\sigma}\right)} d x \\
\left(\hat{a}_{M L}-\frac{z_{1-\alpha / 2}}{\sqrt{n I\left(\hat{a}_{M L}\right)}}, \hat{a}_{M L}+\frac{z_{1-\alpha / 2}}{\sqrt{n I\left(\hat{a}_{M L}\right)}}\right)
\end{gathered}
$$

General model

LR test

$$
\begin{aligned}
& H_{0}: a=a_{0} \\
& H_{1}: a \neq a_{0}
\end{aligned}
$$

Critical region (significance level α, L likelihood)

$$
\left\{\mathbf{y} \left\lvert\,-2 \log \frac{L\left(a_{0} ; \mathbf{y}\right)}{L\left(\hat{a}_{M L} ; \mathbf{y}\right)} \geq \chi_{1}^{2}(1-\alpha)\right.\right\}
$$

Updated R package

https : //cran.r - project.org/web/packages/LeArEst/

Eye pupil

Area Estimator

Loaci Prcture... eye3.jpeg

Data

Levels of groy	Box size	Line thickness
4	20	1
Number of slices	Slicing	Parallelization
10	Star	Off

Object ongntness	Represent ooject as
dark	clrcle

Estimation

| Error
 distribution | Error
 standard deviation |
| :--- | :--- | :--- |
| T 4 | ML estimator |

$$
\mathrm{E} \text { Estimate }
$$

Eye pupil

Area Estimator

```
Load Picture... eye3.jpeg
```


Data

Levels of gray	Boxslze	Line thickness
4	20	1

Number of slices	Slicing	Parallelization
10	Star	Off

Ooject brighthess	Represent object as
dark	v circle

Estimation

Welcomel Click on Load picture (must be JPEG tormat), choose upper left and lower right points of the rectangle surrounding the measured

Eye pupil

Eye pupil

Area Estimator
Data
Levels of gray
4 Box size Line thickness

Number of slices	Slicing	Parallelization
10	Star \quad -	Off
Object brightness	Represent object as	
dark *	circle *	

Estimation

Welcomel Cick on Load picture imust be JPEG format), choose upper left and lower right points of the rectangle surrubnding the measured object, set data parameters and cllck on Estimate.

Please use proportional screen resolution, eg 1920×1080 if you use display with 16.9 aspect fatio. or 1920×1200 in the case of 1610 asoet
\square

Blood artery

Blood artery

Blood artery

Length Estimator

Laad Picture .. s7.jpg
Data
Levels of
gray
10

c. Prepare data

Estimation

	Error Error	standard deviation	Confidence Ievel
T1	ML estirr	-	0.95

Ea Estimate

Testing

Ho value Unit
$10 \quad$ pixel wioth

Aternative

two-slde .

