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Multiple lines detection (MLD)

Data points in the planeA:

A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2

scattered along multiple lines, not known in advance.

MLD problem

Detect multiple lines on the basis of data points setA
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MLD problem applications

• computer vision and image processing
L. A. Fernandes, M. M. Oliveira, Real-time line detection through an improved Hough transform voting scheme, Pattern

Recognition, 41(2008) 299–314

A. Manzanera, T. P. Nguyen, X. Xu, Line and circle detection using dense one-to-one Hough transforms on greyscale images,

EURASIP Journal on Image and Video Processing, (2016), DOI 10.1186/s13640-016-0149-y

• robotics, laser range measurements
C. Fernández, V. Moreno, B. Curto, J. A. Vicente, Clustering and line detection in laser range measurements, Robotics and

Autonomous Systems, 58(2010) 720–726

• civil engineering and geodesy
A. Manzanera, T. P. Nguyen, X. Xu, Line and circle detection using dense one-to-one Hough transforms on greyscale images,

EURASIP Journal on Image and Video Processing, (2016), DOI 10.1186/s13640-016-0149-y

• crop row detection in agriculture
I. Vidović, R. Scitovski, Center-based clustering for line detection and application to crop rows detection, Computers and

Electronics in Agriculture, 109(2014) 212–220
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Methods for MLD problem

• Hough Transform (data without noise)

• Probabilistic Hough Transform and Randomized Hough Transform
(data with noise)
L. A. Fernandes, M. M. Oliveira, Real-time line detection through an improved Hough transform voting scheme, Pattern

Recognition, 41(2008) 299–314

A. Manzanera, T. P. Nguyen, X. Xu, Line and circle detection using dense one-to-one Hough transforms on greyscale images,

EURASIP Journal on Image and Video Processing, (2016), DOI 10.1186/s13640-016-0149-y

P. Mukhopadhyay, B. B. Chaudhuri, A survey of Hough transform, Pattern Recognition, 48(2015) 993–1010

Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 6/31



MLD problem as a clustering problem

Data points in the planeA:

A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2

scattered along multiple lines, not known in advance.
Set of lines in the plane L:

L = {`(ξ, η, ζ) ≡ ξx+ ηy + ζ = 0, [ξ, η, ζ]T ∈ P}

Set of parameter-vectors P:

P = {p = [ξ, η, ζ]T ∈ R3 : ξ2 + η2 = 1}
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Euclidean distance from the point ai = (xi, yi) ∈ A to the line
`(p) ∈ L, p = [ξ, η, ζ]T ∈ P:

D(ai, `(p)) = (ξ xi + η yi + ζ)2

Globally Optimal k-partition:

argmin
Π∈Part(A;k)

F(Π), F(Π) =

k∑
j=1

∑
ai∈πj

D(ai, `j(pj)),

where Part(A; k) is the set of all k-partitions of the setA and

pj ∈ argmin
p∈P

∑
ai∈πj

D(ai, `(p)).

Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 8/31



Euclidean distance from the point ai = (xi, yi) ∈ A to the line
`(p) ∈ L, p = [ξ, η, ζ]T ∈ P:

D(ai, `(p)) = (ξ xi + η yi + ζ)2

Globally Optimal k-partition:

argmin
Π∈Part(A;k)

F(Π), F(Π) =

k∑
j=1

∑
ai∈πj

D(ai, `j(pj)),

where Part(A; k) is the set of all k-partitions of the setA and

pj ∈ argmin
p∈P

∑
ai∈πj

D(ai, `(p)).

Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 8/31



Globally Optimal k-partition:

argmin
pj∈P

F (p1 . . . ,pk), F (p1 . . . ,pk) =

m∑
i=1

min
1≤j≤k

D(ai, `j(pj)),

• F is nonconvex and nondifferentiable

• F is Lipschitz-continuous
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Special case k = 1

Total Least Squares (TLS) line

• wi > 0 be the corresponding weights of the data points ai ∈ A.
• line ˜̀∈ L, with parameter-vector [ξ̃, η̃, ζ̃]T ∈ P , passes through the

centroid (x̄, ȳ) of the weighted data point set (w,A), it can be
written in the form:

˜̀≡ ξ̃(x− x̄) + η̃(y − ȳ) = 0.

argmin
[ξ,η]T∈R2, ξ2+η2=1

G(ξ, η)

G(ξ, η) =

m∑
i=1

wi(ξ(xi − x) + η(yi − y))2

• The problem attains a unique global minimum if and only if at least
one of the following two conditions is fulfilled:

i)
∑m

i=1 wi(xi − x)2 6=
∑m

i=1 wi(yi − y)2 and
ii)
∑m

i=1 wi(xi − x)(yi − y) 6= 0.
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B :=

 x1 − x y1 − y
...

...
xm − x ym − y

 , D := diag(w1 . . . , wm), t = [ξ, η]T ,

G(ξ, η) = ‖
√
DBt‖2, ‖t‖ = 1

its global minimum is attained at every unit eigenvector t̂ = [ξ̂, η̂]T

corresponding to the smaller eigenvalue of the matrix BTDB.
ˆ̀(ξ̂, η̂, ζ̂) ≡ ξ̂(x− x) + η̂(y − y) = 0, ξ̂2 + η̂2 = 1, where
ζ̂ = −ξ̂x− η̂y.
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The k-closest line algorithm (KCL)

Algorithm

Step A: (Assignment step) For each set of mutually different lines
`1, . . . , `k ∈ L, the setA should be divided into k disjoint
unempty clusters π1, . . . , πk by using the minimal distance
principle

πj := {a ∈ A : D(a, `j) ≤ D(a, `s), ∀s 6= j};

Step B: (Update step) Given a partition Π = {π1, . . . , πk} of the setA,
one can define the corresponding line cluster-centers
ˆ̀
1, . . . , ˆ̀

k ∈ L as corresponding TLS-lines. Set `j = ˆ̀
j ,

j = 1, . . . , k.

KCL algorithm - usually initiated several times with different random initial
lines and for the solution we will take the one yielding the smallest value of
the function F .
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Incremental algorithm for multiple line detection

˜̀
1, . . . , ˜̀

k−1 are known lines, the next line ˜̀
k will be obtained by solving

the following GOP:

argmin
p∈P

Φk(p), Φk(p) =

m∑
i=1

min{δ(i)
k−1,D(ai, `(p))}, (1)

where
δ

(i)
k−1 = min{D(ai, ˜̀

1), . . . ,D(ai, ˜̀
k−1)}. (2)

After that, KCL algorithm is applied to the set of lines {˜̀1, . . . , ˜̀
k}. Since

by increasing the number of clusters in partition, the objective value
decreases, it is reasonable to stop the iterative process when

Fk−Fk−1

F1
< εB,

for some small εB > 0 (say .005).
A. M. Bagirov, J. Ugon, H. Mirzayeva, Nonsmooth nonconvex optimization approach to clusterwise linear regression problems, European

Journal of Operational Research, 229(2013) 132–142.
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New smoothing method

Instead of solving GOP:

argmin
p∈P

Φk(p), Φk(p) =

m∑
i=1

min{δ(i)
k−1,D(ai, `(p))},

we approximate Φk with differentiable function and we solve local
optimization problem.
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By using
|x| = lim

ε→0+
ε log(2 cosh x

ε ),

0 ≤ ε log(2 cosh
x

ε
)− |x| ≤ ε log 2,

and the identity

min{x, y} =
1

2
(x+ y − |x− y|) ,

we will determine a smooth approximation Φε
k of the function Φk given in

(3):

Φk(p) =
1

2

m∑
i=1

(
δ

(i)
k−1 + D(ai, `(p))− |D(ai, `(p))− δ(i)

k−1|
)

≈ 1
2

m∑
i=1

(
δ

(i)
k−1 + D(ai, `(p))− ε log

(
2 cosh

D(ai, `(p))− δ(i)
k−1

ε

))
=: Φε

k(p).
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Main idea
By using such smoothing of the function Φk, we propose a simple, efficient
local optimization method for solving MLD problem and prove its
convergence.

Lemma

Let ε > 0 and suppose that Φk : R3 → R and Φε
k : R3 → R. Then:

(i) 0 ≤ Φk(p)− Φε
k(p) ≤ mε

2 log 2

(ii) Φε
k(p) ≥ −mε

2 log 2, i.e. function Φε
k is bounded below.
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Iterative procedure

Let p(0) = [ξ(0), η(0), ζ(0)]T ∈ P , and s(0) = [ξ(0), η(0)]T . Denoting
ãi := [xi, yi, 1]T .

p(n+1) =

 ξ(n+1)

η(n+1)

ζ(n+1)

 =

[
s(n+1)

ζ(n+1)

]
=

 argmin
s,‖s‖=1

‖
√
D(n)B(n)s‖2

−ξ(n+1)x(n) − η(n+1)y(n)

 ,
where

D(n) = Diag
(
wε1(p(n)), . . . , wεm(p(n))

)
and

B(n) =

 x1 − x(n) y1 − y(n)

...
...

xm − x(n) ym − y(n)

 ,
wεi (p) =

1

2

(
1− tanh

(
pT ãi

)2 − δ(i)
k−1

ε

)
, i = 1, . . . ,m,
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ãi := [xi, yi, 1]T .

p(n+1) =

 ξ(n+1)

η(n+1)

ζ(n+1)

 =

[
s(n+1)

ζ(n+1)

]
=

 argmin
s,‖s‖=1

‖
√
D(n)B(n)s‖2

−ξ(n+1)x(n) − η(n+1)y(n)

 ,
where

D(n) = Diag
(
wε1(p(n)), . . . , wεm(p(n))

)
and

B(n) =

 x1 − x(n) y1 − y(n)

...
...

xm − x(n) ym − y(n)

 ,
wεi (p) =

1

2

(
1− tanh

(
pT ãi
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x(n) =

∑m
i=1w

ε
i (p

(n))xi∑m
i=1w

ε
i (p

(n))
, y(n) =

∑m
i=1w

ε
i (p

(n))yi∑m
i=1w

ε
i (p

(n))
.

In each iteration of the optimization process, the solution
s(n+1) = [ξ(n+1), η(n+1)]T is equal to the eigenvector corresponding to

the smaller eigenvalue of the matrix
(
B(n)

)T
D(n)B(n).
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Converegence of iterative procedure

Proposition

Let p(0) = [ξ(0), η(0), ζ(0)]T ∈ P and s(0) = [ξ(0), η(0)]T , and let the
sequence

(
p(n)

)
be given by the previous iterative process.

If p(n+1) 6= p(n), then Φε
k(p

(n+1)) < Φε
k(p

(n))

Theorem

Let p(0) = [ξ(0), η(0), ζ(0)]T ∈ P , and s(0) = [ξ(0), η(0)]T , and let the
sequence

(
p(n)

)
be given by the previous iterative process. Then

(i) The sequence
(
p(n)

)
has an accumulation point.

(ii) The sequence
(

(Φε
k)

(n)
)

, where (Φε
k)

(n) := Φε
k(p

(n)), converges.

(iii) Every accumulation point p̂ of the sequence
(
p(n)

)
is a stationary

point of the functional Φε
k.

(iv) If p̂1 and p̂2 are two accumulation points of the sequence
(
p(n)

)
,

then Φε
k(p̂1) = Φε

k(p̂2).
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Converegence of iterative procedure

Proposition

Let p(0) = [ξ(0), η(0), ζ(0)]T ∈ P and s(0) = [ξ(0), η(0)]T , and let the
sequence

(
p(n)

)
be given by the previous iterative process.

If p(n+1) 6= p(n), then Φε
k(p

(n+1)) < Φε
k(p

(n))

Theorem

Let p(0) = [ξ(0), η(0), ζ(0)]T ∈ P , and s(0) = [ξ(0), η(0)]T , and let the
sequence

(
p(n)

)
be given by the previous iterative process. Then
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(
p(n)

)
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usually initiated several times with different random initial approximation
and for the solution we will take the one yielding the smallest value of the
function Φε

k.
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Smoothed incremental algorithm for multiple line detection

˜̀
1, . . . , ˜̀

k−1 are known lines, the next line ˜̀
k will be obtained by solving

the following GOP:

argmin
p∈P

Φk(p), Φε
k(p) =

m∑
i=1

min{δ(i)
k−1,D(ai, `(p))}, (3)

where
δ

(i)
k−1 = min{D(ai, ˜̀

1), . . . ,D(ai, ˜̀
k−1)}. (4)

After that, KCL algorithm is applied to the set of lines {˜̀1, . . . , ˜̀
k}.

Since by increasing the number of clusters in partition, the objective value
decreases, it is reasonable to stop the incremental iterative process when

Fk−Fk−1

F1
< εB,

for some small εB > 0 (say .005).
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Improving Stoping criteria

Motivated by DBSCAN algorithm:
M. Ester, H. Kriegel, J. Sander, A density-based algorithm for discovering clusters in large spatial databases with noise, In: 2nd

International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, 1996, 226–231.

Let MinPts(A) > 2. For every a ∈ A, let εa > 0 be the radius of the
smallest disc centered at a and containing MinPts elements of the setA
MinPts(A) := blog |A|c
R. Scitovski, K. Sabo, DBSCAN-like clustering method for various data densities, Pattern Analysis and Applications 23 (2020), 541-554

LetR(A) = {εa : a ∈ A}. We define ε-density of the setA to be the
99% quantile of the setR(A) and denote it by ε(A).
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Note that for almost all points a ∈ A, the corresponding disc with center a
and radius ε(A) contains at least MinPts elements from the setA.
Let Π(k) be the partition obtained in step k of the iterative process. For
each cluster π ∈ Π(k) with line-center `(p) let

V (π) := {D1(ai, `(p)) : ai ∈ π},

where D1(ai, `(p)) = |ξxi + ηyi + ζ| is the ordinary Euclidean distance
from the point ai = (xi, yi) ∈ π to the line `(p). We define Quantile of
the Data to Line Deviations (QD) of cluster π as 90% quantile of the set
V (π).
We expect that the partition Π(k) is near k-GOPart if:

QD[π] < ε(A), ∀π ∈ Π(k).

Therefore, stopping criterion can be complemented with this condition.
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Numerical experiments

The method has been tested on numerous artificial data sets, which have
been constructed in the following way: n ∈ {5, 10} lines, which intersect
rectangle ∆ = [0, 10]× [0, 10] and whose mutual Hausdorff distances in
rectangle ∆ are at least 1, were chosen randomly. To each point on the
line noise was added by generating pseudorandom numbers from bivariate
normal distribution with mean zero and covariance matrix σ2I ,
σ2 ∈ {.05, .1}, where I is the 2× 2 identity matrix. For each pair
(n, σ2), 100 examples were generated.
Results - percent of recognition

n σ2 = 0.05 σ2 = 0.1

5 100% 100%
10 96% 88%
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For each cluster π = π(`) ∈ Π(k) we will determine
MinPts(π) := blog |π|c and ε-density ε(π) of the cluster π. In the
sequence (ε(π))π∈Π(k) , we will try to identify outliers, so that this
sequence is standardized with

νπ := |ε(π)− med
π∈Π(k)

ε(π)|/MAD, MAD = 1.483 med
π∈Π(k)

∣∣ε(π)− med
π∈Π(k)

∣∣.
(5)

The center-line ` of a cluster π will be dropped if νπ > 3.5. This would
mean that such cluster is more sparse around its center-line than other
clusters.

Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 27/31



Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 28/31



Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 29/31



Kristian Sabo, Rudolf Scitovski Incremental method for multiple line detection problem 30/31



Method weakness

• Problems when data are in noisy environment⇒ Further research!
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