Incoming student mobility Name of UNIOS University Unit: DEPARTMENT OF MATHEMATICS ## COURSES OFFERED IN FOREIGN LANGUAGE FOR ERASMUS+ INDIVIDUAL INCOMING STUDENTS | Department or Chair within the UNIOS Unit | Department of Mathematics | |---|--| | Study program | Undergraduate university study programme in Mathematics
and Computer Science Undergraduate university study programme in Mathematics | | Study level | Undergraduate (Bachelor) | | Course title | Machine Learning | | Course code | M096 | | Language of instruction | English | | Brief course description | Syllabus. Supervised Learning: Introduction to the theory of machine learning. Techniques of nonparametric learning. K-nearest neighbour method. Decision three. Bayesian learning. Bayesian naive and optimal classifier. Neural network: representation and learning. Regression and classification. Linear regression. Locally weighted linear regression. Logistical regression and classification. Regularization. Support Vector Machine (SVM): Hyperplane separation. Optimal marginal classification. Dual problem. Kernel method. Sequential minimal optimization. Theory of statistical learning. Vapnik-Chervonenkis dimension. Unsupervised Learning: Introduction and motivation. Definitions. Different examples of applications Representative of the finite set from R in least squares (LS) sense and in least absolute deviations (LAD) sense. Representative of the finite set from R². Distance-like function in R². Centroid, median and geometrics median in plane. Representative of the finite set from Rⁿ: centroid, median, geometrics median. | ## **ERASMUS+** ## EU programme for education, training, youth and sport | | Applications of Mahalanobis distance-like function. Representative of the data on unit circle. Data clustering methods. K-means algorithm. EM (Expectation Maximization) algorithm. K-medoid method. Agglomerative clustering Dimension reduction. Principal Component Analysis. Appropriate number of clusters in a partition: Indexes. Spectral clustering methods and theory of graphs. Probabilistic and statistical aspects of data clustering | |----------------------------|--| | Form of teaching | Consultative teaching. | | Form of assessment | Lectures and exercises are illustrated by ready-made software packages. Exercises are partially auditory and partially laboratory, with the use of computers. Lectures, exercises and seminars are obligatory. Final exam consists of a written and oral part, and it is taken after the completion of lectures. Acceptable results achieved in mid-term exams throughout the semester replace the written part of the exam. Students may influence their final grade by doing homework or writing a seminar paper during the semester. Homework expands course contents, and students are expected to be independent and creative. Seminar papers are understood as an extension of homework. | | Number of ECTS | 7 | | Class hours per week | 3+2+0 | | Minimum number of students | | | Period of realization | Summer semester | | Lecturer | Kristian Sabo
Domagoj Matijević |