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This paper compares the predictive performance of linear discriminant analysis, neural
networks, genetic algorithms and decision trees in distinguishing between good and slow
payers of bank credit card accounts. Predictive models were built using the evolutionary
techniques and the results compared with those gained from the discriminant analysis
model published in Crook et al. (1992), The Service Industries Journal 12 which uses the
same dataset. A range of parameters under the control of the investigator was investigated.
We found that the predictive performance of linear discriminant analysis was superior to
that of the other three techniques. This is consistent with some studies but inconsistent with
others.

1. Introduction

The aim of this paper is to compare the predictive ability of linear discriminant
analysis (LDA), neural networks (NNs), genetic algorithms (GAs) and decision trees (DTs)
in the classification of credit card applicants. All four techniques have been applied to the
same dataset and the results of the three evolutionary techniques are compared with the
LDA results published in Crook er al. (1992).

Whilst many credit scoring agencies have experimented with the latter three techniques,
few offer products which use them (Desai et al., 1997) and the same applies to credit
granting organisations. Because of the commercial value of particular models there are very
few publicly available comparisons between these techniques in the credit scoring context.
The published literature suggests mixed results: some find that traditional techniques
correctly classify a greater proportion of applications than Al techniques, others the
reverse. For example, using data from three credit unions Desai et al. (1996) found that
when classifying accepted loans into goods and bads neural networks correctly classified
a greater percentage of both the total samples, and of the goods, than either linear
discriminant analysis or logistic regression. But when generic models were estimated
neural nets were superior only in the prediction of the bads. King et al. (1994) compared a
large number of algorithms including linear discriminant analysis, neural networks and
decision trees (but not genetic algorithms) and found that linear discriminant analysis
predicted less well than various types of decision trees and a smooth additive multiple
regression technique, but better than neural networks. However their data oversampled
the ‘bad’ payers and it is known that such oversampling can affect the performance of
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certain techniques. On the other hand, Desai et al. (1997) applying the same dataset as in
their 1996 paper, to a 3 group classification (goods, poors and bads) and including genetic
algorithms into the contest, found that logistic regression was superior to the other methods
except for the classification of the poors, where neural networks were best. In classifying
the total sample they found that the performance of linear discriminant analysis was almost
identical to that of neural networks and slightly better than that of genetic algorithms.

One conclusion which is often expressed by those assessing the accuracy of neural
networks at least is that their performance depends on the values of certain parameters
which are under the control of the investigor. Whilst there are certain heuristics to aid the
choice of these values, the fact that neural networks and genetic algorithms allow for certain
nonlinearities which is not possible in the traditional techniques, does not always seem to
be reflected in a superior performance. There is therefore a need for further experimentation
to support, or otherwise, the small number of findings so far published. In addition no
published study has compared all four techniques: traditional, neural networks, genetic
algorithms and decision trees using the same credit applicant datasets and using a realistic
division of cases between the ‘good’ and ‘bad’ groups. It is the aim of this paper to do this.

The structure of this paper is as follows. In the following section we briefly outline the
four classification techniques which are to be compared. In section three we describe the
data used. In the fourth section we present some implementation details and in section five
the results. The final section concludes.

2. Four classification techniques
2.1 Linear discriminant analysis

The principles of LDA have been rehearsed elsewhere (Choi (1986); Tatsuoka (1970);
Eisenbeis & Avery (1972); Fisher (1936)). Essentially, suppose for each application we
have a (p x 1) column vector of characteristics, X, and suppose we wish to divide the total
population of applications into two groups, J; and J;. If the allocation rule chosen is to
minimise the expected costs of misclassifying a case into the group of which it is not a
member then we wish to minimise:

L=P1L1/ A dx + PzLZ/ &
) N

where Py, (P2) is the prior probability that a case is a member of set 1(2)

Li, (L) is the cost of misclassifying a member of set 1(2) into set 2(1)

J1(X), f2(X) is the probability density function that a vector X will occur given that a
case is a member of set 1(2).

If it is assumed that L; = L, = 1, that the values of X are normally distributed with
the same covariance matrix, C, in both sets, then it can be shown (Thomas, 1997) that it is
optimal to classify a case into set 1 if

X - 0-5(m, + my) C™'(my — my) > '°g(%) @

1

where m(m3) is the (p x 1) vector of mean values of the characteristics for set 1(2).
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Fisher (1936) deduced the same linear rule as equation (1) but in a different way. He
argued that the greatest difference between the groups occurred when the between groups
sums of squares divided by the within groups sums of squares was maximised. This may
be represented as:
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T WTAW &

where W is a column vector of weights, B is the between group sums of squares and cross
products matrix and A is the within groups sums of squares and cross products matrix
(Tatsuoka, 1970). Differentiating equation (2) with respect to each weight separately and
equating each resulting equation to zero gives, eventually, in the case of two groups a single
set of weights for which A is maximised (Tatsuoka, 1970).

2.2 Neural networks

A multilayer perceptron feed forward neural network consists of an input layer, a number
of hidden layers and an output layer. In the credit scoring context the input layer consists
of p characteristics, X;, j = 1,..., p. A weight is applied to each characteristic and the
resulting products are summed to give

14
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where W,f!] is the weight connecting variable j and neuron £ in layer 1. Each U,E” value is

transformed non linearly to give an output of neuron k:
! = fh. @

The y,[(” values are then weighted by a new set of weights and the procedures repeated
to yield a new layer of neurons in layer 2. In the credit classification problem, with two
groups, the final layer would consist of a single neuron and a case would be classified
according to whether y, < ¢ where ¢ is the critical value of O, such that cases with
¥n > c are allocated into one group and cases where y, < c are allocated into the second
group.

In general we may write equations (3) and (4) as

[s-1]

2
[s] _ [s) [s—1]
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j
and
= rulh where k = 1...z1%)

where zI8! = number of neurons in layer [s] and z*~11 = number of neurons in layer
[s —11.
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The only requirement of equation (4) is that it is differentiable. Examples are the
logistic and hyperbolic tangent functions. In supervised learning networks the predicted
group membership is compared with the observed membership to produce an error, e(i):

e(i) =d() — y(@) ®)

where d(i) denotes the observed group membership, and y(i) the predicted group
membership, for case i. The error is transformed to give

e(i) = 0-5¢(;)? 6

and the mean value of £(i)across all N cases is calculated to give the ‘average squared
error’, E:

1 & 5
E=— ;0.& @i).

Initially a set of weights in each neuron is chosen randomly. The value of £(i) is calculated
for each case and the weights are altered. The procedure is repeated for each case with the
aim of adjusting the weights to minimise E.

For each case, i, the weights in each neuron in each layer are altered by a magnitude
which is proportional to their marginal effect on &(i), that is, by a magnitude which is
proportional to d&(i)/d W), Thus

AWy = n—js(’) ™

[s)°
W, )

The precise formula for the modification of W;; depends on whether the weights are in the
final layer or a hidden layer. Given equations (3)—(6), the d¢/3W term in equation (7) can
be written as

de de ey Oy Quy
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where all variables relate to case i and so the ‘(i) term is dropped. Calculating the partial
derivatives, equation (8) gives
de
[s1 —
awe
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In the output layer, d; is known and so, therefore, is e;. Given the functional form of
equation (4), f 1(U,Es]) can be found and the y[-s—” is known, so equation (9) can be
evaluated, and given n, AW;; can be calculated.

In a hidden layer e is not observable. Instead the error values from the final layer are
back propagated to the weights in earlier layers. The formula used is

AW = naflyl—l (10)
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and
1
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1
where 8,[”1] = —-73—5——— = e}”’” f,'[H” which is derived from applying the chain rule to

auU s+11 —
equations (4)—(6) anél substituting into (8). Thus if [s + 1] were the final layer, and [s] a
hidden layer, the value of §; would be known. If both [s + 1] and [s] were hidden layers
then from equation (11) it can be seen that B,E’] is derived from 6}”” and so, recursively,
from 815+"] where [s + n] is the final output layer. Equation (10) is known as the ‘delta
rule’ and § the ‘local gradient’.

As explained, the back propagation technique leads the weights to converge on those
values which minimise E. However, for various reasons the rate of convergence is slow
(Haykin, p. 190). Jacobs (1988) has outlined four heuristics to accelerate the rate of
convergence. The method used in this paper is to allow the learning coefficient, 5, to alter
according to the delta-bar-delta method as new cases are fed through the network?.

2.3  Genetic algorithms

Consider a population of possible alternative solutions to a problem. Each solution may
be represented as a collection, or string, of numbers. Each such number is known as a
‘gene’. Each specific value which a gene can take on is known as an ‘allele’. A collection
of such numbers, arranged in specific positions, is known as a ‘chromosome’. Genetic
algorithms essentially evaluate the success, called ‘fitness’, of each possible solution in
achieving a given objective, and by the processes of mutation and crossover, they alter
potential solutions to improve their fitness. Crossover involves selecting, say, two potential
solutions and exchanging portions of these solutions. The probability that a solution is
selected is positively related to the fitness of the solution. The resulting ‘children’ replace
members of the population with the lowest fitness and the procedure is repeated. At some
stages various values (called ‘alleles’) in a chromosome are mutated: they are replaced by
a different value. The probability that a string is selected for crossover is proportional to its
fitness. The probability that an allele is mutated is also stochastic. GAs were first devised
by Holland (1975) and have been used in a variety of contexts: optimisation, classification
and clustering problems (Albright, 1993; Goldberg, 1989).

In the credit applicant classification problem two approaches have been followed.
Albright (1993) estimated the parameters of a polynomial scoring equation where each
chromosome consisted of estimated parameters. A case was classified according to whether
or not the value of the function exceeded a critical value. An alternative method is to

To explain this method, define

de(n—1)

Pjin) = (1 _A)WT(—n——l)
M

+APji(n—1).

The change in 1 between one case and the following case is then equal to a constant if Pj;(n — 1) and
85(”/3 W ji(n) have different signs, equals —Bn ; if P and ﬁvf,—, have the same signs, and equals zero otherwise.
These properties fulfil two of Jacob’s heuristics.
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estimate ranges of values of each characteristic and a switching value which indicates
whether a characteristic is to enter the classification or not.

There are few direct comparisons of classificatory accuracy in the credit scoring context
involving GAs. Fogarty & Ireson (1993/4) compared the performance of a GA, a decision
tree approach, a nearest neighbour approach and a Bayesian method and concluded that
the GA was superior to the other methods, although with only 6% of the sample classified
as bads none of these methods were superior to classifying all cases as goods. Albright
(1993), in an application of a GA to 918 credit union loans, correctly classified 76% of
the sample. Desai et al. (1997) found that GAs were inferior to traditional techniques and
neural networks. King et al. (1994) using a dataset with 8900 cases found that a decision
tree method gave a higher percentage correctly classified than either neural networks, GA
or a range of many different statistical techniques.

2.4 Decision trees

In these techniques a characteristic is chosen and a particular value of the characteristic is
chosen to partition the cases into two subsets. The characteristic becomes a decision node
and each decision, indicated by a particular value of the characteristic, forms a branch. Each
branch leads to a different characteristic. Again a particular value of this characteristic is
chosen to partition the subsets into further subsets and so on. After successive partitions
the members of the final subsets will be members of only one group. This is known as a
Recursive Partitioning Algorithm (RPA). New applicants can be classified by successively
applying the partitioning criteria to identify the predicted group membership.

Different tests have been used to determine the appropriate characteristics and critical
values for each decision node. In this paper we used an information criterion (Quinlan,
1993) whereby different characteristics and different critical values of each are examined,
and those which maximise the difference between the information required to partition a
set before the test and that information after the test are chosen for partitioning. The details
are as follows.

Suppose a test with k outcomes partitions a training set into 7;(i = 1...k) subsets.
Call the probability that a randomly chosen member, i, of any subset, T}, will be a member
of a particular class, C;, P(Cj)jer; - According to Quinlan ‘the information conveyed by a
message depends on its probability’. Hence the information relating to class membership
is:

i
I(T) = =) PiAC)) -logy(Pi(Cj))  bits.
j=1

This is the entropy of set 7.

If applied to the whole training set, T, we gain the average information needed to
correctly classify a randomly chosen case.

Suppose a test with n outcomes is used to divide the training sample, T, into T subsets
(k = 1...n). Then the average information needed to correctly classify a case, I,(T), is:

I:(T) = 3"§_, px - 1 (Tx) where py is the proportion of all cases which is in subset T,
and I (T}) is as above.

The method then chooses the characteristic and cutoff values to maximise:

Gain Ratioy, = G, /Sx
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where
Gy = I(T) - I,(T)

and

n
Se=—)_ pi-logyp
k=1

G, is the information gained by partitioning the training set using test X over that gained
from allocating members of the training set at random. Sy is the information gained by
randomly dividing the training set into n groups.

The RPA will create splits until either no further improvement is possible or each leaf
contains only one group: goods or bads. Quinlan argues that such a tree may ‘overfit’
the data in the sense that the optimal partitions for the training sample may not give the
best classification in the test sample. To reduce the degree of overfit the optimal tree is
constructed for the training sample and branches are then pruned off.

Quinlan (1993) describes a technique to transform a decision tree into propositional-
like production rules. The rules are in the form: L — R where the left-hand side is a
conjunction of attribute based tests and the right hand side is a class. The technique used
involved four stages as follows. First the initial rules are obtained by following the path
from the root to each leaf. The rule’s left-hand-side contains the conditions and the right
hand side is the class of that leaf. The path from the root to a leaf gives an initial rule.
Second, the initial rules are simplified by removing conditions that do not seem to be useful
in discriminating this class from others. Third all the rules for a class are examined and the
ones that do not contribute to the accuracy of the set of rules as a whole are removed. This
selection process is applied to each class. Finally the set of rules for the classes are ordered
in order to minimise the false positive errors and then a default class is chosen.

3. Data preparation
3.1 Sample

The data set consists of 1001 individuals who had been issued with a credit card, who had
used it and whose repayment history was known. A case was defined as a ‘slow’ if the
individual had missed one or more repayments in the sample period and ‘good’ otherwise.
This is a relatively stringent criterion; most credit grantors would be concerned only if
three consecutive payments were missed, and would then target the account for collection
procedures. However, given the small sample size available such a criterion would give a
very small number of ‘bad’ cases, whereas the discrimination between slows and goods
results in 38.1% of cases in the smaller group.

Furthermore, such a small sample size may be all that would be available, in practice,
from some sectors of the US consumer credit market, such as credit unions. In addition, it
might represent the size of the first available sample after the introduction of a new product.

The same fourteen characteristics were used in all four methods as described in Table 1.
However many of the variables were transformed in different ways between the four
algorithms. These transforms are explained below.
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TABLE 1
Characteristics variables

Applicant’s employment status
Years at bank

Home mortgage value
Number of children

Years at present employment
Residential status

Types of account

Other cards held

Outgoings

Estimated value of home
Home phone

Applicant’s income

Spouse’s income

Major credit cards held

32 LDA

The LDA results have been reported in Crook ez al. (1992) using the same dataset as has
been used with the evolutionary techniques in this paper. One way of transforming nominal
level data is to use dummy variables. But given the relatively small degrees of freedom
which would result we used an alternative approach, the weights of evidence method.
Values of nominal variables were banded together according to similarity of g; /(g; + b;)
where g; and b; are, the number of good and slow cases, respectively, in the nominal
category i. The alphabetic values were then replaced by X ; where:

Xj = log(g,-/b,-) + log(BT/GT)

where b (g ) = number of slow (good) cases in band j
Br(Gr) = total number of slow (good) cases in the dataset.
In the case of ratio level data, for consistency, a similar procedure was followed.

3.3 Neural networks

Large numeric values will make the values of U,E” equation (3) very large and so the value
of f! in equation (9) close to zero. This would result in slow learning. Therefore to speed
up learning the data was scaled to give a fairly even distribution in the [0 : 0-9] range.
The scaling procedure varied between the variables. As an example, in the case of income
where the vast majority of values were less than £35 000, the following transformation was
used:

X = 1og(35’(‘)00 ) +1 if income < £31699

x'=09 if income > £31699
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In the case of nominal level data, one-of-N coding was used. That is where such a variable
had N possible alphabetic values, N separate inputs were presented to the network with
the digit 1 in one of the N digits used to represent the value for each input variable.

3.4 Decision trees

No transformations were required with this technique since the minimum level of
measurement required is nominal.

3.5 Genetic algorithms

GAs require numeric values at nominal level or higher. Therefore alphabetic variables were
replaced by adjacent natural numbers. For example, residential status, with six possible
alphabetic values, was recoded with a numeric value between 0 and S replacing each
alphabetic value. Finally four of the ratio level variables were scaled by dividing by a
constant.

4. Implementation issues

The LDA results, drawn from Crook et al. (1992) were derived after applying a stepwise
routine to an initial data set of 21 variables. The 14 significant variables which resulted
were used in the alternative methods reported in this paper. The validity of the model was
tested using the jacknife method. That is the models was estimated for all cases except for
one which was used as the test sample. This was repeated for all 1001 cases. The LDA was
estimated using BMDP.

4.1 Neural networks

Different network topologies, learning and momentum rates, activation functions and
epoch numbers were experimented with. The number of iterations ranged between 40000
and 200 000. The learning rule used was delta—bar—delta as explained in Section 2 above.
The number of nodes used in the input layer was usually 29 although in a few experiments
we used 23 when only eight fields were included. Either one or two hidden layers were
used. The number of nodes in the first hidden layer ranged between 18 and S; the number
in the second hidden layer ranged between 3 and S. The number of nodes in the output
layer was 2. The number of epochs ie number of times the datasets were presented to the
network ranged between 50 and 500.

The networks were build using a randomly selected sample of 501 cases and tested on
the remaining 500 cases. The networks were estimated using NeuralWorks Professional
Plus.

4.2 Genetic algorithms

In this application each chromosome consisted of a string of adjacent blocks of adjacent
digits (genes). Each block related to a particular applicant characteristic, such as years
at address. In the case of continuously measured variables each block consisted of three
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genes: the maximum, minimum and outcome value respectively. The values of the outcome
variables were coded O for ‘do not use this variable to imply an outcome’, or 1 for ‘use this
variable such that if a case meets the conditions indicated by the range in the preceding
genes, classify the case as a good’. In the case of a binary variable a block consisted of a
single value and an outcome value. The reason why the outcome variable was used to imply
two joint conditions (whether to use and, if used, group membership) is that this allows the
GA to generate predictive conditions which relate only to a subset of the attributes, rather
than all of them.

A chromosome therefore consisted of I genes where ! = 2 - b+ 3 - ¢ where b is the
number of binary attributes and ¢ is the number of continuously measured attributes. A
(simplified) example is shown below

No of children  Credit card  Years at present employment
300 01 6 12 1

This chromosome indicates that having between 0 and 3 children implies the condition
relating to the number of children is not to be used to predict group membership, and that
having no credit card and between 6 and 12 years at present employment implies a case is
a good.

A chromosome thus represents a solution in the form of a number of predictions. The
predictions take the form whereby firstly, the values of the variables with an indicator value
of 1 implying a joint condition associated with a case being used to make a prediction
and that prediction being that the case is a good, and secondly, values of variables with
an indicator value of O implying that the attribute is not to be used to predict group
membership. Mutation occurred by changing any of the three (or two in the case of binary
variables) genes representing a characteristic.

The fitness of the model was estimated using the following steps. First, identify
those characteristics where the outcome gene has the value 1, that is it indicates that the
characteristic should be used and that a case which fulfils the condition would be classified
as a good. Second, for each case compare the observed characteristic values with those
of the condition in the chromosome. If the observed values fulfil the conditions in the
chromosome predict that the case is a good, and if this is a correct prediction increase the
number of hits by one. If the observed values do not fulfil the conditions in the chromosome
but the case is actually a slow, also increase the number of hits by one. This implies
that the success of the rule contained in the chromosome is equally ‘high’ if it correctly
classifies goods as if it correctly classifies slows. The fitness (@) of the chromosome is then
calculated as: & = (r4,)%> — a/N;, where ry, is the ratio of the number of hits to the total
number of training cases, Ny, is the total number of hits and « is a constant. The second
term represents a penalty for achieving a small number of hits, implying unreliability of
the first term.

The GAs were estimated using a package called PGA (Ross & Ballinger, 1993).

4.3 Decision trees

The models were tested using ten way cross-validation. The data was divided into N = 10
datasets such that each set contained an equal distribution of goods and slows. Then N
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different models are built, in each case using an aggregation of N — 1 sets as the training
set and the remaining single set as the test set. This ensures that each case appears in only
one test set. The overali proportion of test cases correctly classified is then the average
value over the N test sets.

The trees were estimated using C4-5 (Quinlan, 1993).

5. Results
5.1 Comparisons within techniques

As explained in Section 4 a large number of experiments were performed with the
evolutionary techniques.

In the case of neural networks we experimented with the transformation function (tanh
or sigmoid), the topology (number of input nodes and number of hidden layers), the epoch
number and the number of iterations. The greatest total proportion of cases correctly
classified came from a sigmoid transformation function with all variables included, one
hidden layer and an epoch number of 500 and 40 000 iterations.

Our experiments suggest a number of general conclusions, as follows.

1. Whilst increasing the number of iterations above 40 000 did not always increase the
proportion of total test cases correctly classified, it often increased the proportion of
goods and decreased the proportion of slows correctly classified.

2. Increasing the epoch size to 500 generally, but not always, increased the predictive
accuracy. For example, given a sigmoid transfer function, two hidden layers and
40 000 iterations, increasing the epoch size from 50 to 100 increased the proportion
of the test sample which was correctly classified from 61.90% to 63.31%. Increasing
the epoch size to 250 and to 500 resulted in the performance deteriorating to 61.90%
correctly classified.

3. Increasing the number of inputs in the first hidden layer and removing the second
hidden layer increased the proportion of cases which were correctly classified.
For example, again consider a sigmoid transfer function, an epoch number of 500
and 40000 iterations. Changing from a 29-8-3-2 (number of nodes in the input
layer, in the first hidden layer, in the second hidden layer and in the output layer,
respectively) to a 29-12-2, increased the proportion correctly classified from 61.90%
to 64.20%. (However, changing from 29-8-3-2 to 29-6-2 led to a marginal reduction
in predictive performance.)

4. The tanh transformation function generally gave inferior results compared to the
sigmoid function.

Tuming to the RPA, ten different trees were built on 901 cases each and each tested on
the remaining 100 cases. For each tree a set of production rules were derived and tested,
again on test datasets of 100 cases. The size of the trees ranged from 421 to 470 leaves and
decision nodes in the training samples. After pruning, the number of leaves and decision
nodes ranged from 154 to 233. In 8 out of the 10 trees pruning reduced the proportion
of the test set misclassified. This suggests that the prepruned trees overfitted the training
dataset.

In all cases the error rate in the training sample increased after pruning as one would
expect. The range of proportions of the training sets correctly classified by production rules
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TABLE 2
Comparison of results: percentage correctly classified
Techniques Total test Goods Slows
sample
LDAD 68-4 85 40
Neural networks 64-2 79 39
Decision trees 62-3
Genetic algorithms 64-5
Cprop 46-8

Notes: () from Crook et al. (1992)

was 72.9% to 61.9%. The corresponding figures for the test sets were 67.0% to 59.0%.
These differences are due to differences between the selected training and test samples.

In the case of GAs various experiments were conducted. We initially used steady state
reproduction whereby children were added to the population of possible solutions. We
then used various combinations of (a) one child or twins produced by each crossover,
(b) generational reproduction, whereby the new child is placed in a new population which
replaces the old one when n children (n being the number of solutions in the population)
are produced (c) with or without mutation and (d) with or without crossover.

The maximum fitness was gained with generational reproduction, with twins, with
mutation and crossover. The lowest fitness, occurred with steady state reproduction,
without twins, no mutation and with crossover turned on. In general, producing twins rather
than not doing so, and applying crossover rather than not applying it, increased the fitness
of the resulting solution. The maximum proportion of the test cases correctly classified
occurred over several combinations of parameters including that which gave the greatest
fitness.

The advantage of generational reproduction is that to some extent it improves a
weakness of steady state reproduction. This weakness is that in steady state reproduction a
fit solution takes over the population very quickly and does not allow variations to stay in
the population long enough to contribute to the final solution.

5.2 Comparison across techniques

Table 2 shows the relative performance of each technique and the proportion of cases which
could be correctly classified by chance (Cprop)- In the case of LDA the proportion correctly
classified was calculated using the jacknife technique. For NNs the proportion given is the
highest proportion given by any experiment. For decision trees the proportion is the mean
proportion over ten trees. In the case of GAs the porportion is that corresponding to the
highest mean fitness over 50 runs of each experiment.

The most successful technique in terms of the proportion of the total number of cases
correctly classified is that reproduced from Crook et al. (1992): LDA. GAs and NNs appear
to classify approximately the same proportion of cases, but the success of GAs is probably
overemphasised because the reported result is based on the classification of the training
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sample. This was a constraint imposed by the software. Decision trees performed least
well of the four methods.

Comparisons of the proportions of goods and slows correctly classified is possible only
between LDA and NNs. Nets were found to be marginally less successful than LDA in
classifying slows and considerably less successful at predicting the goods. Given that nets
are computationally more time consuming, the findings of this paper suggest that LDA
appears to dominate nets in terms of both accuracy and cost.

Given that neural networks and GAs allow for far more nonlinearities in the relationship
between the individual’s characteristics and his or her repayment performance than LDA,
the superior performance of LDA may seem surprising. Possible explanations for these
differences are: that the training samples and test samples differ between the techniques,
that the transformations applied to the characteristics variables in LDA result in superior
predictive performance, and that the evolutionary techniques have found local, but not
global, optimum solution sets. Considering the first possibility it is likely that, everything
else equal, the larger training sample used (1000 cases) in the case of LDA would give
estimated parameters with lower variances about the population values than the smaller
samples (500 cases) used to estimated the neural nets. This explanation would apply to a
lesser extent to the decision trees where the training samples consisted of repeated samples
of 900 cases each. The explanation would not apply to the GAs since they were trained and
tested in the training sample and this is known to over estimate the predictive performance.

The validity of the second possible explanation for the different results is difficult to
assess. On the one hand aggregating responses across different alphabetic values for each
characteristic constrains the estimated coefficients compared with using dummy variables
for each alphabetic value; on the other hand, the transformed value used relates to the value
closely correlated with the dependent variable in the discriminating equation. Therefore the
effect of the transformation on the predictive power of LDA versus GAs or trees is difficult
to disentangle because neither of the latter two methods involved transformed values.

The third explanation is always applicable to any use of all of these techniques. We
experimented with a number of parameters under our control in all three evolutionary
techniques as explained above.

Our results are consistent with those of certain other studies when credit scoring data
is used, but inconsistent with others. For example in a three way classification, Desai ez
al. (1997) found that when considering the predictive performance for their total sample,
LDA was almost identical to that of neural networks and slightly better than GAs. But
neural networks (with a best neuron rule) gave the greatest predictive performance when
predicting poor payers (rather than goods or chargeoffs and bankrupts) and GAs were
superior when predicting chargeoffs and bankrupts. King et al. (1994) found that LDA gave
a greater predictive performance than neural networks, but a poorer performance compared
with decision trees. On the other hand, Desai et al. (1996) in a two way classification,
found that LDA was inferior to neural networks at predicting both good and bad payers
(separately). In addition Khoylou & Stirling (1993) using a sample of two thousand cases,
found that neural networks performed considerably better than multiple linear regression,
although the latter was not included in our comparison. In terms of ranking decision trees
and GAs, the ranking we obtained is exactly the same as that gained by Fogarty & Ireson
(1993/4).

The differences between our results and those of other studies could be explained
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in a number of different ways: differences in the types of individuals in the samples,
differences in the sample sizes, differences in the ranges of controllable parameters used
in the experiments, differences in the transformations applied to the data and so on.

6. Conclusion

We have compared the predictive performance of LDA, neural networks, GAs and decision
trees using a small sample of credit scoring data. Like other studies we found that LDA
was superior to GAs. However consistent with some studies but unlike others we found that
neural networks were inferior to LDA. Unlike other studies we found that neural networks
were almost identical to LDA at predicting the slow payers, and that LDA was superior at
predicting good payers. Further research is needed particularly to incorporate the relative
costs of rejected good applicants and accepted slow payers, using larger datasets which
preserve the proportions of good and slow payers in the population.
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