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Introduction
Compartmental epidemiological models

® models for spread of the epidemics in population divided into
several disjoint compartments or classes (e.g. susceptible .S,
exposed F, infected I and recovered R individuals)

® population is of either constant size IV or it could vary with time
(Nta t=> 0)

® deterministic case - e.g. systems of difference equations; systems
of ODEs

® stochastic case - e.g. multidimensional Markov chains in discrete
or continuous time; systems of SDEs governed by Brownian
motion or some other type of process

® models depend of several parameters - the most important is the
per-capita transmission rate 8 > 0 which governs the dynamics of
transition from class S to class
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Igmlidlu;t?kmmodel

e system of ODEs

dst) = (A= (I +p)S@)) dt
dE(t) = (§pl(SE) — (s + wE®)) dt
dI(t) = (KE(t)— (y+0)I(t)) dt

dR(t) = (vI(t) — pR(t)) dt

Figure 1: SEIR model scheme

® js it sensible to identify more compartments within the population?
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Deterministic SEIPHAR model
SEIPHAR model - compartments

the human population is divided into seven mutually exclusive
compartments:

® S - susceptible individuals

e F - individuals exposed to the virus SARS-CoV-2, but not yet
infectious to others

® ]| - symptomatic infectious individuals

P - infectuous superspreaders
® A - asymptomatic infectious individuals
® H - hospitalized infected individuals

® R - recovered individuals

the total population size at time ¢ is given by

N(t) = S(t) + E(t) + I(t) + P(t) + A(t) + H(t) + R(t), t>0
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Deterministic SEIPHAR model

SEIPHAR model - parameters

Parameter  Description Units
A Estimated daily number of newborns in Wuhan in 2019 per day
B8 Transmission coefficient due to infected individuals per day
l Relative transmissibility from hospitalized individuals —

! Transmission coefficient due to superspreaders per day
K Rate at which exposed individuals become infectious per day
1 Proportion of transitions from exposed do infected class —
02 Proportion of transitions from exposed to superspreaders —
Ya Hospitalization rate per day
Yr Recovery rate for hospitalized patients per day
Yi Recovery rate for non-hospitalized patients per day
k1 Weight for recovery rate due to infected class —
ko Weight for recovery rate due to superspreaders —
0; Disease induced death rate for infected class per day
Op Disease induced death rate for superspreaders per day
On Disease induced death rate for hospitalized class per day
n Natural death rate per day
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Deterministic SEIPHAR model

SEIPHAR model - scheme

A

Figure 2: SEIPHAR model scheme

StatSem MathOs, 3.2.2022 Stochastic models for SARS-CoV-2 epidemics 6/35



Deterministic SEIPHAR model
SEIPHAR model - ODEs dynamics

ds(t) = (M- (§ U@ +1HE®) + g PE) + 1) S¢) dt

dB(t) = (§fhy (1) +LH (1) S(t) + 5 PO)S(E) = (5 + ) B(t) ) dt
dl(t) = (kp1E@) — (va+ K1y +6:)1(t))dt

dP(t) = (kp2E(t) = (Ya + ki + 6p) P(1)) dt

dH(t) = (va(I(t) + P()) — ( + 8 H (1)) dt
dA@) = (50— p1 = p2)B(L) — (i + ) A(L))
AR(E) = ((A(t) + kaI(t) + ko P() + 3 H (1) — uR(1)) dt
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Deterministic SEIPHAR model
SEIPHAR model (ODEs) - R,

® the basic reproduction number Ry - the expected number of
secondary cases generated by one infected individual during its
lifespan as infectious in a fully susceptible population

e deterministic SEIPHAR model Ry:

RD_ " wh(Bprwp + B paw;) + 1Bva(p1wp + pawi)
K+ u WhHWiWp

)

wi =Y +k1vi+ 06, wp="a+keVi+d, wh=7+0

® Ry - a threshold value that is epidemiologically significant and
determines the potential of an infectious disease to spread in a
population
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Stochastic SEIPHAR model
SEIPHAR model - SDEs dynamics

® stochastic SEIPHAR model - constructed as system of SDEs by
introducing the perturbation in the form of the environmental
white noise in transmission coefficients 3 and /3’

Bdt—),@dt-}-o‘ldBl(t), o1 >0

B dt — B'dt + o2dBa(t), o9 >0

where By = {Bj(t), t > 0} and By = {Bs(t), t > 0} are
independent standard Brownian motions with intensities o1 > 0
and g2 >0
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Stochastic SEIPHAR model
SEIPHAR model - SDEs dynamics

ds(t) = (A= (§g L) +H) + 5 P(0) + 1) S(t)) dt
— 8 (1(0) + LH(1)) S()dBy (t) — %5 P()S(1)dBa ()
AE() = (i (L(0) + LH®) S(0) + 2 POSE) — (n + w)E®)) dt
T2 (1) + LH() S()dBy (1) + 35 P(1)S(t) dBa (1)
di(t) = (sp1EQ) — (Yo +kivi +6:)I(t))dt
dP(t) = (kpsB(t) — (ya + kai + 6,)P()) di
dH(t) = (va(I(t)+ P(t)) — (v + 0n)H(t)) dt
dA(t) = (k(1—p1—p2)E(t) — (i + p)A(t)) dt
AR() = (u(AW) + kL) + kaP () + 2 H(E) — uR()) dt

(1)
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Stochastic SEIPHAR model
SEIPHAR model - probability space and space of values

e complete filtered probability space (2, F,F,P)

e filtration F = {F;, t > 0} is generated by natural filtrations of
Brownian motions By and By

® space of values of the process
{(S(8), E(), 1(t), P(t), H(t), A(t), R(t)) , t > 0}

]RZ_ = {(z1, x2, w3, 24, T5,26,27) 1 x; >0, Vi=1,...,7}
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Stochastic SEIPHAR model
SEIPHAR model - SDEs solution

Theorem

For any initial value (S(0), E(0), 1(0), P(0), H(0), A(0), R(0)) € RT.
there exists a unique solution

{(5(8), E®), I(t), P(t), H(t), A(t), R(t)) , t > 0}

of the SDE system (1) for every t > 0, which almost surely remains
positive for all t > 0. Moreover, since

N(t)=8(t)+ E(t)+I(t)+ P(t)+ A(t) + H(t) + R(t) we have that

A
— =liminf N(¢) < limsup N(t) =

o t—o0 t—o00

t\>

where 0 = max {;, 0p, Op, }.
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Stochastic SEIPHAR model ‘
SEIPHAR model - space of values

® positively invariant set of the system (1):
™ ={(S(t), E(t),I(t), P(t), H(t), A(t), R(t)) : S(t) > 0, E(t) > 0,

I(t) > 0,P(t) >0,H(t) >0,A(t) >0,R(t) >0,N(t) < N}

if the system starts from I'*, it never leaves I'*
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

® the virus remains persistent in population if there is at least one
symptomatic infectious, asymptomatic infectious, hospitalized
individual or super-spreader

® persistence in mean - we say that the system (1) is persistent in
mean if

[I(s)+ P(s)+ A(s)+ H(s)] >0 P—as., (2)
where
[I(s)+ P(s)+ A(s) + H(s)] =
1
= tl_i}m n (I(s)+ P(s)+ A(s) + H(s)) ds
0
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

Theorem

Let initial value (S(0), E(0),1(0), P(0), A(0), H(0), R(0)) € R, such
that the solution of the system (1) is in T'*, where u, 3, 8" and | satisfy
the relation

A> <th) (I(t) + LH()) + Nﬁ(lt)P(t) + u) S(), Wt>0

and where c is a small fixed constant such that inf,;>o E(t)/N(t) > ¢
If we assume that noises satisfy the condition

¥ + Ya + 0p
Ya + k1% + 8;) (v + 6p)

a%+0§<cm<p1( +

Yr + Ya + Op L —p1—p2
P2( ;

Ya + k2vi + 8p) (v + 9p) Y + 1
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

Theorem
then the solution {(S(t), E(t),I(t), P(t), A(t), H(t), R(t)), t > 0} has
the property

111;13321-‘[1@) + P(t)+ H(t) + At)] >

1) 1)
C(:‘ipl( Yr + Ya + 0p Yr + Ya 1 Op i

+ K
Ya + k17 + 05) (7 + Op) P o+ o + p)(yr + dp)

+%(1—01—P2) B (U%+U%)> 50
Vit c
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Stochastic SEIPHAR model
SEIPHAR model - persistence in mean

® alternative condition for persistence in mean is based on the
so-called stochastic Ry:

(B+p8)4
R = . 3
0 K+ p+ 5 (Ul+02)A—2 (3)

o if Rg > 1, the solution
{(S(2), E@), 1(t), P(1), A(t), H(t), R(t)), t = 0}

of system (1) is persistent in mean
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Stochastic SEIPHAR model
SEIPHAR model - extinction

Theorem

If noises satisfy that

1 B (B8)?
20+ 1) (a%* 73 )“’

than for any initial value
(5(0), E(0), 1(0), P(0), A(0), H(0), R(0)) € RY, such that the
solution of the system (1) is in I'*, it follows that

Et)+I(t)+Pt)+H(t)+Alt) -0 P—a.s. ast— oo,
while

limsup S(t) = A P—a.s.
1

t—o0
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Stochastic SEIPHAR model

SEIPHAR model - extinction

® alternative conditions for extinction in mean are also based on Rj

given by (3)

e ifo? < ﬁ% max {1,1}, 05 < ﬁ'%\ﬁ and RS < 1, than the disease
P-a.s. goes to extinction
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Sensitivity analysis and simulations

SEIPHAR model - parameter values

Symbol Description Value
A Estimated daily number of newborns in Wuhan in 2019 310 [7
B Transmission coefficient due to infected individuals 2.55 [5
l Relative transmissibility from hospitalized individuals 1.56 [5
B’ Transmission coefficient due to superspreaders 7.65 [5]
K Rate at which exposed individuals become infectious 0.25 [5]
P1 Proportion of transitions from exposed do symptomatic infected class 0.58 [5
P2 Proportion of transitions from exposed to superspreaders 0.001 [5
Ya Hospitalization rate 0.94 [5
Y Recovery rate for hospitalized patients 0.5 [5
Yi Recovery rate for non-hospitalized patients 0.27 [5
k1 Weight for recovery rate due to infected class 0.85 [a
ko Weight for recovery rate due to superspreaders 0.95 [a
8, Disease induced death rate for infected class 1/23[5
Sp Disease induced death rate for superspreaders 1/23 [5
on Disease induced death rate for hospitalized class 1/23[5
n Natural death rate 0.00714 [6
o1 Intensity of Brownian motion B due to infected class 0.0005 [a
oo Intensity of Brownian motion By due to superspreaders 0.001 [a

Table 1: Parameters values, either based on the epidemics in Wuhan in the
period January 4 - March 9, 2020, or rationally assumed (k1, k2, 01, 02)
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Sensitivity analysis and simulations
SEIPHAR model - sensitivity analysis

® RP and the stochastic model related threshold Rj are compared

regarding the values of the normalized forward sensitivity indices
(NFSI)

® NFSI is the ratio of the relative change in the basic reproduction
number R} as a function of the parameter 6 to the relative change
in the parameter 6, assuming that R} is differentiable with respect
to parameter:
AR,
df R
® BFSI is used to discover parameters that have a high impact on
R} and that should be targeted by specific epidemiological
intervention strategies

1€{D,S}
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Sensitivity analysis and simulations

SEIPHAR model - R} sensitivity analysis

® RY is the most sensitive to change in values of parameters 3, p1,
lv Vi and r

e change of RY = 4.5206 under the 10% increase in value of
parameters 3, p1, [, v; and 7, is given in the following table:

Parameter Value of RY Relative change in RY (%)

3 4.9720 19.98
1 4.9715 +9.97
l 4.8501 +7.29
i 4.4366 —1.86
Yy 4.2429 —6.14
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Sensitivity analysis and simulations
SEIPHAR model - R sensitivity analysis

° Rg is the most sensitive to change in values of parameters 3, [/,
01 and 09

® change of R§ = 1.0298 under the 10% increase in value of
parameters 3/, 3, o1 and o9 is given in the following table:

Parameter Value of R Relative change in B3 (%)

B’ 1.1071 1751
B 1.0556 +2.51
o1 0.9883 —4.03
oo 0.8817 —14.38
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Sensitivity analysis and simulations
SEIPHAR model - simulation parameters

e theoretical results (persistence, extinction) are, for reasonable set
of values of model parameters for which the global positive
solution of system (1) exists, verified within the simulation study

® simulation parameters - adjusted values from Table 1 in order to
satisfy the theoretical assumptions of persistence and extinction
theorems

® simulations confirm that the trajectories of the stochastic model
either oscillate around (on the short time-scale) or are close to (on
the long time-scale) the trajectories of the deterministic model,
showing the robustness of such stochastic model to the Brownian
noise
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Sensitivity analysis and simulations

Persistence in mean

— Stohastic model
— Deterministic mode!

— Stonasticmodel
Deterministicmodel

(c) infected

(a) susceptible (b) exposed (d) superspreaders

— Stonastic model
Deterministc model

— Stohastic model
Deterministic model

(e) hospitalized () asymptomatic (g) recovered

Figure 3: Persistence - stochastic (blue) and deterministic (orange) model
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Sensitivity analysis and simulations

Extinction

— Stohastic magel
Deterministic model

| — Stonasticmocel . — Stohastc model
Deterministc model B Deterministic model

(a) susceptible (b) exposed (c) infected (d) superspreaders

— Stohastic model
Deterministic model

(e) hospitalized ~ (f) asymptomatic (g) recovered

Figure 4: Extinction - stochastic (blue) and deterministic (orange) model
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Future work
Delayed SVEIR model - main characteristics

e V- vaccinated individuals (new compartment)

® cumulative number of exposed individuals by time ¢ > 0 (A, is a
unit-rate Poisson process):

AR (¢ /5 £)5™(s)I" (s) ds

® cumulative number of vaccinated individuals by time ¢ > 0,
independent of (A%L(t), t > 0):

AV (t) = A, n/a(t)S”(s) ds
0
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Future work

Delayed SVEIR model - scheme

Iz
vg\ f M &
A .3 w i
S H
\F
Figure 5: SVEIR model scheme
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Future work

Delayed SVEIR model - delays

® the individual ¢ going through the S — F — I — R path has the
following time epochs: 7, 7+ &, i + &+ L, i + €+ L + W,
representing the times of becoming exposed, infected, immune and
then again susceptible

e £, is the exposure period, Z; is the infectious period and Wi is the
natural immunity period

* an individual can initially be exposed (&), infected (Z?) or
recovered (W)
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Future work

Delayed SVEIR model

P(t< &)
P(S <t< &+ Th),

(E+Ti+W; <t)
G5(t) = P(t < 1Y),

() =PI <t<I2+W;)
1(t) = P(Z2 +W; < t)

StatSem MathOs, 3.2.2022

(t) =
O(t)=P(E+Ti <t <& +Ti + W),
=) = P

- distributions of delays

G§(t) = P(t < é?o)

Uo(t) = P(EY <t < & +1Ty)

Bo(t) = P(EY+Ti <t < E)+Ti + W)
Eo(t) = P(EX+ T, + Wi < t)

G5(t) = P(t <W))

Ga(t) = POV? < 1)

Stochastic models for SARS-CoV-2 epidemics
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Future work
Delayed SVEIR model - counting process .

® denote the proportion of individuals at time ¢ in compartment X by X" (t)
® the counting process

(S™(1), V" (1), E" (), I"(t), R"(t), t = 0)

is given as follows:

V™ (0) E™(0) (0)
St(it) = S™0)+ Z Liyociy + Z L Z Lizotw, <t}+
i=1 =
R™(0) A (1) ()
+ Z Liwocey + Z Lmityi<ey + Z Lirit &t Titwi <t} =
i=1
—A’é( ) = Av (1)
v (0) AV ()
V"(t) = Z I{)}_?>t} + Z I{Ti+yi>t}
i=1 i=1
E™(0) AR ()
E"(1t) = Z I{£?>t} + Z I{ri+e; >t}
i=1 i=1
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Future work

Delayed SVEIR model - counting process

1"(0) E™(0) AR (t)

e = Z I{Iio>t} + Z I{£?§t<£g+zi} + Z Uritei<t<ri+e+Ti}
1:?(10) i1:"1(0) i;}l(o)

R™(t) = Z I{w§>t} + Z I{Ig§t<zg+wi} + Z I{£?+Zi§t<£?+2i+wi}+
zzAlTEL(t) =1 i=1

+ E L&+ T St<mi+ 8+ T+ W3}

=1
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Future work
Delayed SVEIR model - system of Volterra integral
equations

® according to [6], we want to prove that the law of large number limit of the
above described counting system is the unique solution of the following system
of deterministic Volterra integral equations:

S(t) = S0)+V(0)Yo(t)+ E(0)=0(t) + I(0)Z1(t) + R(0)G2(t)—
— [ (B()S()I()(1 — E(t - 5)) + a(s)S(s)T(t — 5)—
—v< mt ~8) ~ R()E(t - 1)) ds

Vi) = )+ [ (a(s)S(s)Y(t —s) — V(s)Y(t — s)) ds
E®) = E(0) —|—ft,3 )I(s)G°(t — s)ds

I(t) = 1(0)GS(t) + E(0)¥o(t) + jﬂ(s)S(s)I(s)\IJ(t —s)ds
R(t) = R(0)G5(t)+I(0)®1(t) + %‘(0)@0(t)+

+ f (B(s)S(s)I(s)®(t —s) — R(s)E(t — s)) ds
(4)
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Future work
Delayed SVEIR model - stochastic perturbation .

® transmission coefficient 3(t) - Ornstein-Uhlenbeck process § = (3(t), t > 0)
given by the stochastic differential equation (SDE)

dB(t) = 0 (Be — B(t)) dt + odB(t), t>0,

where f. is the mean of the stationary Gaussian distribution with variance
o/v26, 0 > 0 determines the speed of the mean reversion, o is the intensity of
volatility and Brownian motion B = (B(t), t > 0) is the driving process

® explicit solution:

t

B(t) = B+ (BO) — B)e " + o / ¢ 0 4p(s),

0

t
2
a/e_g(t_s) dB(s) ~ N (0, g—e(l - e_zgt))
0

® existence of unique positive solution, analysis of persistence and extinction of
the disease
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