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Introduction

Compartmental epidemiological models

• models for spread of the epidemics in population divided into
several disjoint compartments or classes (e.g. susceptible S,
exposed E, infected I and recovered R individuals)

• population is of either constant size N or it could vary with time
(Nt, t ≥ 0)

• deterministic case - e.g. systems of difference equations; systems
of ODEs

• stochastic case - e.g. multidimensional Markov chains in discrete
or continuous time; systems of SDEs governed by Brownian
motion or some other type of process

• models depend of several parameters - the most important is the
per-capita transmission rate β > 0 which governs the dynamics of
transition from class S to class E
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Introduction

SEIR model

• system of ODEs

dS(t) =
(
Λ −

(
β

N(t)I(t) + µ
)

S(t)
)

dt

dE(t) =
(

β
N(t)I(t)S(t) − (κ + µ)E(t)

)
dt

dI(t) = (κE(t) − (γ + δ)I(t)) dt
dR(t) = (γI(t) − µR(t)) dt

Figure 1: SEIR model scheme

• is it sensible to identify more compartments within the population?

StatSem MathOs, 3.2.2022 Stochastic models for SARS-CoV-2 epidemics 3/35



Deterministic SEIPHAR model

SEIPHAR model - compartments

the human population is divided into seven mutually exclusive
compartments:

• S - susceptible individuals
• E - individuals exposed to the virus SARS-CoV-2, but not yet

infectious to others
• I - symptomatic infectious individuals
• P - infectuous superspreaders
• A - asymptomatic infectious individuals
• H - hospitalized infected individuals
• R - recovered individuals
• the total population size at time t is given by

N(t) = S(t) + E(t) + I(t) + P (t) + A(t) + H(t) + R(t), t ≥ 0
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Deterministic SEIPHAR model

SEIPHAR model - parameters

Parameter Description Units
Λ Estimated daily number of newborns in Wuhan in 2019 per day
β Transmission coefficient due to infected individuals per day
l Relative transmissibility from hospitalized individuals —

β′ Transmission coefficient due to superspreaders per day
κ Rate at which exposed individuals become infectious per day
ρ1 Proportion of transitions from exposed do infected class —
ρ2 Proportion of transitions from exposed to superspreaders —
γa Hospitalization rate per day
γr Recovery rate for hospitalized patients per day
γi Recovery rate for non-hospitalized patients per day
k1 Weight for recovery rate due to infected class —
k2 Weight for recovery rate due to superspreaders —
δi Disease induced death rate for infected class per day
δp Disease induced death rate for superspreaders per day
δh Disease induced death rate for hospitalized class per day
µ Natural death rate per day
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Deterministic SEIPHAR model

SEIPHAR model - scheme

Figure 2: SEIPHAR model scheme
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Deterministic SEIPHAR model

SEIPHAR model - ODEs dynamics

dS(t) =
(
Λ −

(
β

N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ
)

S(t)
)

dt

dE(t) =
(

β
N(t) (I(t) + lH(t)) S(t) + β′

N(t)P (t)S(t) − (κ + µ)E(t)
)

dt

dI(t) = (κρ1E(t) − (γa + k1γi + δi)I(t)) dt

dP (t) = (κρ2E(t) − (γa + k2γi + δp)P (t)) dt

dH(t) = (γa(I(t) + P (t)) − (γr + δh)H(t)) dt

dA(t) = (κ(1 − ρ1 − ρ2)E(t) − (γi + µ)A(t)) dt

dR(t) = (γi(A(t) + k1I(t) + k2P (t)) + γrH(t) − µR(t)) dt
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Deterministic SEIPHAR model

SEIPHAR model (ODEs) - R0

• the basic reproduction number R0 - the expected number of
secondary cases generated by one infected individual during its
lifespan as infectious in a fully susceptible population

• deterministic SEIPHAR model R0:

RD
0 = κ

κ + µ

ωh(βρ1ωp + β′ρ2ωi) + lβγa(ρ1ωp + ρ2ωi)
ωhωiωp

,

ωi = γa + k1γi + δi, ωp = γa + k2γi + δp, ωh = γr + δh

• R0 - a threshold value that is epidemiologically significant and
determines the potential of an infectious disease to spread in a
population
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Stochastic SEIPHAR model

SEIPHAR model - SDEs dynamics

• stochastic SEIPHAR model - constructed as system of SDEs by
introducing the perturbation in the form of the environmental
white noise in transmission coefficients β and β′

β dt → β dt + σ1dB1(t), σ1 > 0

β′ dt → β′ dt + σ2dB2(t), σ2 > 0

where B1 = {B1(t), t ≥ 0} and B2 = {B2(t), t ≥ 0} are
independent standard Brownian motions with intensities σ1 > 0
and σ2 > 0
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Stochastic SEIPHAR model

SEIPHAR model - SDEs dynamics

dS(t) =
(
Λ −

(
β

N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ
)

S(t)
)

dt

− σ1
N(t) (I(t) + lH(t)) S(t)dB1(t) − σ2

N(t)P (t)S(t)dB2(t)

dE(t) =
(

β
N(t) (I(t) + lH(t)) S(t) + β′

N(t)P (t)S(t) − (κ + µ)E(t)
)

dt

+ σ1
N(t) (I(t) + lH(t)) S(t)dB1(t) + σ2

N(t)P (t)S(t) dB2(t)

dI(t) = (κρ1E(t) − (γa + k1γi + δi)I(t)) dt
dP (t) = (κρ2E(t) − (γa + k2γi + δp)P (t)) dt
dH(t) = (γa(I(t) + P (t)) − (γr + δh)H(t)) dt
dA(t) = (κ(1 − ρ1 − ρ2)E(t) − (γi + µ)A(t)) dt
dR(t) = (γi(A(t) + k1I(t) + k2P (t)) + γrH(t) − µR(t)) dt

(1)
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Stochastic SEIPHAR model

SEIPHAR model - probability space and space of values

• complete filtered probability space (Ω, F ,F,P)

• filtration F = {Ft, t ≥ 0} is generated by natural filtrations of
Brownian motions B1 and B2

• space of values of the process
{(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) , t ≥ 0}:

R7
+ = {(x1, x2, x3, x4, x5, x6, x7) : xi > 0, ∀i = 1, . . . , 7}
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Stochastic SEIPHAR model

SEIPHAR model - SDEs solution

Theorem
For any initial value (S(0), E(0), I(0), P (0), H(0), A(0), R(0)) ∈ R7

+
there exists a unique solution

{(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) , t ≥ 0}

of the SDE system (1) for every t > 0, which almost surely remains
positive for all t > 0. Moreover, since
N(t) = S(t) + E(t) + I(t) + P (t) + A(t) + H(t) + R(t) we have that

Λ
δ

= lim inf
t→∞

N(t) ≤ lim sup
t→∞

N(t) = Λ
µ

,

where δ = max {δi, δp, δh}.
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Stochastic SEIPHAR model

SEIPHAR model - space of values

• positively invariant set of the system (1):

Γ⋆ = {(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) : S(t) > 0, E(t) > 0,

I(t) > 0, P (t) > 0, H(t) > 0, A(t) > 0, R(t) > 0, N(t) ≤ N}

if the system starts from Γ⋆, it never leaves Γ⋆
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

• the virus remains persistent in population if there is at least one
symptomatic infectious, asymptomatic infectious, hospitalized
individual or super-spreader

• persistence in mean - we say that the system (1) is persistent in
mean if

[I(s) + P (s) + A(s) + H(s)] > 0 P − a.s., (2)

where
[I(s) + P (s) + A(s) + H(s)] =

= lim
t→∞

1
t

t∫
0

(I(s) + P (s) + A(s) + H(s)) ds
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

Theorem
Let initial value (S(0), E(0), I(0), P (0), A(0), H(0), R(0)) ∈ R7

+, such
that the solution of the system (1) is in Γ⋆, where µ, β, β′ and l satisfy
the relation

Λ >

(
β

N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ

)
S(t), ∀t ≥ 0

and where c is a small fixed constant such that inft≥0 E(t)/N(t) ≥ c.
If we assume that noises satisfy the condition

σ2
1 + σ2

2 < cκ

(
ρ1

γr + γa + δp

(γa + k1γi + δi)(γr + δp)+

ρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp) + 1 − ρ1 − ρ2
γi + µ

)
,
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

Theorem
then the solution {(S(t), E(t), I(t), P (t), A(t), H(t), R(t)) , t ≥ 0} has
the property

lim inf
t→∞

[I(t) + P (t) + H(t) + A(t)] ≥

c

(
κρ1

γr + γa + δp

(γa + k1γi + δi)(γr + δp) + κρ2
γr + γa + δp

(γa + k2γi + δp)(γr + δp)+

+κ(1 − ρ1 − ρ2)
γi + µ

−
(
σ2

1 + σ2
2
)

c

)
> 0.
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Stochastic SEIPHAR model

SEIPHAR model - persistence in mean

• alternative condition for persistence in mean is based on the
so-called stochastic R0:

RS
0 =

(β + β′) Λ
µ

κ + µ + 1
2
(
σ2

1 + σ2
2
) Λ2

µ2

(3)

• if RS
0 > 1, the solution

{(S(t), E(t), I(t), P (t), A(t), H(t), R(t)) , t ≥ 0}

of system (1) is persistent in mean
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Stochastic SEIPHAR model

SEIPHAR model - extinction

Theorem
If noises satisfy that

1
2 (κ + µ)

(
β2

σ2
1

+ (β′)2

σ2
2

)
< 1,

than for any initial value
(S(0), E(0), I(0), P (0), A(0), H(0), R(0)) ∈ R7

+, such that the
solution of the system (1) is in Γ⋆, it follows that

E(t) + I(t) + P (t) + H(t) + A(t) → 0 P − a.s. as t → ∞,

while
lim sup

t→∞
S(t) = Λ

µ
P − a.s.
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Stochastic SEIPHAR model

SEIPHAR model - extinction

• alternative conditions for extinction in mean are also based on RS
0

given by (3)

• if σ2
1 ≤ β 4µ

Λ max {1, l}, σ2
2 ≤ β′ 4µ

Λ and RS
0 < 1, than the disease

P -a.s. goes to extinction
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Sensitivity analysis and simulations

SEIPHAR model - parameter values

Symbol Description Value
Λ Estimated daily number of newborns in Wuhan in 2019 310 [7]
β Transmission coefficient due to infected individuals 2.55 [5]
l Relative transmissibility from hospitalized individuals 1.56 [5]
β′ Transmission coefficient due to superspreaders 7.65 [5]
κ Rate at which exposed individuals become infectious 0.25 [5]
ρ1 Proportion of transitions from exposed do symptomatic infected class 0.58 [5]
ρ2 Proportion of transitions from exposed to superspreaders 0.001 [5]
γa Hospitalization rate 0.94 [5]
γr Recovery rate for hospitalized patients 0.5 [5]
γi Recovery rate for non-hospitalized patients 0.27 [5]
k1 Weight for recovery rate due to infected class 0.85 [a]
k2 Weight for recovery rate due to superspreaders 0.95 [a]
δi Disease induced death rate for infected class 1/23 [5]
δp Disease induced death rate for superspreaders 1/23 [5]
δh Disease induced death rate for hospitalized class 1/23 [5]
µ Natural death rate 0.00714 [6]
σ1 Intensity of Brownian motion B1 due to infected class 0.0005 [a]
σ2 Intensity of Brownian motion B2 due to superspreaders 0.001 [a]

Table 1: Parameters values, either based on the epidemics in Wuhan in the
period January 4 - March 9, 2020, or rationally assumed (k1, k2, σ1, σ2)

StatSem MathOs, 3.2.2022 Stochastic models for SARS-CoV-2 epidemics 20/35



Sensitivity analysis and simulations

SEIPHAR model - sensitivity analysis

• RD
0 and the stochastic model related threshold RS

0 are compared
regarding the values of the normalized forward sensitivity indices
(NFSI)

• NFSI is the ratio of the relative change in the basic reproduction
number Ri

0 as a function of the parameter θ to the relative change
in the parameter θ, assuming that Ri

0 is differentiable with respect
to parameter:

ΥRi
0

θ = dRi
0

dθ

θ

Ri
0
, i ∈ {D, S}

• BFSI is used to discover parameters that have a high impact on
Ri

0 and that should be targeted by specific epidemiological
intervention strategies
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Sensitivity analysis and simulations

SEIPHAR model - RD
0 sensitivity analysis

• RD
0 is the most sensitive to change in values of parameters β, ρ1,

l, γi and γr

• change of RD
0 = 4.5206 under the 10% increase in value of

parameters β, ρ1, l, γi and γr is given in the following table:

Parameter Value of RD
0 Relative change in RD

0 (%)
β 4.9720 +9.98
ρ1 4.9715 +9.97
l 4.8501 +7.29
γi 4.4366 −1.86
γr 4.2429 −6.14
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Sensitivity analysis and simulations

SEIPHAR model - RS
0 sensitivity analysis

• RS
0 is the most sensitive to change in values of parameters β, β′,

σ1 and σ2

• change of RS
0 = 1.0298 under the 10% increase in value of

parameters β′, β, σ1 and σ2 is given in the following table:

Parameter Value of RS
0 Relative change in RS

0 (%)
β′ 1.1071 +7.51
β 1.0556 +2.51
σ1 0.9883 −4.03
σ2 0.8817 −14.38
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Sensitivity analysis and simulations

SEIPHAR model - simulation parameters

• theoretical results (persistence, extinction) are, for reasonable set
of values of model parameters for which the global positive
solution of system (1) exists, verified within the simulation study

• simulation parameters - adjusted values from Table 1 in order to
satisfy the theoretical assumptions of persistence and extinction
theorems

• simulations confirm that the trajectories of the stochastic model
either oscillate around (on the short time-scale) or are close to (on
the long time-scale) the trajectories of the deterministic model,
showing the robustness of such stochastic model to the Brownian
noise
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Sensitivity analysis and simulations

Persistence in mean

(a) susceptible (b) exposed (c) infected (d) superspreaders

(e) hospitalized (f) asymptomatic (g) recovered

Figure 3: Persistence - stochastic (blue) and deterministic (orange) model
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Sensitivity analysis and simulations

Extinction

(a) susceptible (b) exposed (c) infected (d) superspreaders

(e) hospitalized (f) asymptomatic (g) recovered

Figure 4: Extinction - stochastic (blue) and deterministic (orange) model
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Future work

Delayed SVEIR model - main characteristics

• V - vaccinated individuals (new compartment)
• cumulative number of exposed individuals by time t > 0 (A∗ is a

unit-rate Poisson process):

An
E(t) = A∗

n

t∫
0

β(t)Sn(s)In(s) ds


• cumulative number of vaccinated individuals by time t > 0,

independent of (An
E(t), t ≥ 0):

An
V (t) = A∗

n

t∫
0

α(t)Sn(s) ds


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Future work

Delayed SVEIR model - scheme

Figure 5: SVEIR model scheme
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Future work

Delayed SVEIR model - delays

• the individual i going through the S − E − I − R path has the
following time epochs: τi, τi + Ei, τi + Ei + Ii, τi + Ei + Ii + Wi,
representing the times of becoming exposed, infected, immune and
then again susceptible

• Ei is the exposure period, Ii is the infectious period and Wi is the
natural immunity period

• an individual can initially be exposed (E0
i ), infected (I0

i ) or
recovered (W 0

i )
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Future work

Delayed SVEIR model - distributions of delays

Gc(t) = P (t < Ei) Gc
0(t) = P (t < E0

i )
Ψ(t) = P (Ei ≤ t < Ei + Ii), Ψ0(t) = P (E0

i ≤ t < E0
i + Ii)

Φ(t) = P (Ei + Ii ≤ t < Ei + Ii + Wi), Φ0(t) = P (E0
i + Ii ≤ t < E0

i + Ii + Wi)
Ξ(t) = P (Ei + Ii + Wi ≤ t) Ξ0(t) = P (E0

i + Ii + Wi ≤ t)

Gc
1(t) = P (t < I0

i ),
Φ1(t) = P (I0

i ≤ t < I0
i + Wi) Gc

2(t) = P (t < W0
i )

Ξ1(t) = P (I0
i + Wi ≤ t) G2(t) = P (W0

i ≤ t).
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Future work

Delayed SVEIR model - counting process
• denote the proportion of individuals at time t in compartment X by Xn(t)
• the counting process

(Sn(t), V n(t), En(t), In(t), Rn(t), t ≥ 0)

is given as follows:

Sn(t) = Sn(0) +
V n(0)∑

i=1

I{Y0
i

≤t} +
En(0)∑

i=1

I{E0
i

+Ii+Wi≤t} +
In(0)∑
i=1

I{I0
i

+Wi≤t}+

+
Rn(0)∑

i=1

I{W0
i

≤t} +
An

V (t)∑
i=1

I{Ti+Yi≤t} +
An

E(t)∑
i=1

I{τi+Ei+Ii+Wi≤t}−

−An
E(t) − An

V (t)

V n(t) =
V n(0)∑

i=1

I{Y0
i

>t} +
An

V (t)∑
i=1

I{Ti+Yi>t}

En(t) =
En(0)∑

i=1

I{E0
i

>t} +
An

E(t)∑
i=1

I{τi+Ei>t}
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Future work

Delayed SVEIR model - counting process

In(t) =
In(0)∑
i=1

I{I0
i

>t} +
En(0)∑

i=1

I{E0
i

≤t<E0
i

+Ii} +
An

E(t)∑
i=1

I{τi+Ei≤t<τi+Ei+Ii}

Rn(t) =
Rn(0)∑

i=1

I{W0
i

>t} +
In(0)∑
i=1

I{I0
i

≤t<I0
i

+Wi} +
En(0)∑

i=1

I{E0
i

+Ii≤t<E0
i

+Ii+Wi}+

+
An

E(t)∑
i=1

I{τi+Ei+Ii≤t<τi+Ei+Ii+Wi}
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Future work

Delayed SVEIR model - system of Volterra integral
equations

• according to [6], we want to prove that the law of large number limit of the
above described counting system is the unique solution of the following system
of deterministic Volterra integral equations:

S(t) = S(0) + V (0)Υ0(t) + E(0)Ξ0(t) + I(0)Ξ1(t) + R(0)G2(t)−

−
t∫

0
(β(s)S(s)I(s)(1 − Ξ(t − s)) + α(s)S(s)Υ(t − s)−

−V (s)Υ(t − s) − R(s)Ξc(t − s)) ds

V (t) = V (0)Υc
0(t) +

t∫
0

(α(s)S(s)Υc(t − s) − V (s)Υ(t − s)) ds

E(t) = E(0)Gc
0(t) +

t∫
0

β(s)S(s)I(s)Gc(t − s) ds

I(t) = I(0)Gc
1(t) + E(0)Ψ0(t) +

t∫
0

β(s)S(s)I(s)Ψ(t − s) ds

R(t) = R(0)Gc
2(t) + I(0)Φ1(t) + E(0)Φ0(t)+

+
t∫

0
(β(s)S(s)I(s)Φ(t − s) − R(s)Ξ(t − s)) ds

(4)
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Future work

Delayed SVEIR model - stochastic perturbation

• transmission coefficient β(t) - Ornstein-Uhlenbeck process β = (β(t), t ≥ 0)
given by the stochastic differential equation (SDE)

dβ(t) = θ (βe − β(t)) dt + σdB(t), t ≥ 0,

where βe is the mean of the stationary Gaussian distribution with variance
σ/

√
2θ, θ > 0 determines the speed of the mean reversion, σ is the intensity of

volatility and Brownian motion B = (B(t), t ≥ 0) is the driving process
• explicit solution:

β(t) = βe + (β(0) − βe) e−θt + σ

t∫
0

e−θ(t−s) dB(s),

σ

t∫
0

e−θ(t−s) dB(s) ∼ N
(

0,
σ2

2θ
(1 − e−2θt)

)
• existence of unique positive solution, analysis of persistence and extinction of

the disease
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