Time-changed SIRV model for epidemic of
SARS-CoV-2 virus

Nenad Suvak

J.J. Strossmayer University of Osijek
Department of Mathematics
nsuvak@mathos.hr

Joint work with Giulia Di Ninno and Jasmina Dordevic
Department of Mathematics, University of Oslo, Norway

September 5, 2022



nsuvak@mathos.hr

0 Data-driven motivation

9 Introduction to epidemic modeling
9 Deterministic SIRV model

@ Stochastic SIRV model
Stochastic modeling of contact rate - time-changed Lévy driven model
Stochastic SIRV model

@ Long-term behavior of epidemic
Extinction
Persistence in mean

@ Simulations
Choice of the model for contact rate
Choice of the model for time-change
Examples

0 Recovery problems
Model related estimation of contact rate
Recovering the time-change process

STORM Workshop, Oslo, 5-8/9/2022  Time-changed SIRV model for epidemic of SARS-CoV-2 virus 1/45



Data-driven motivation

SARS-CoV-2 - daily number of infections
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regularly updated data can be found on https: // ourworldindata. org/ covid-cases
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Introduction to epidemic modeling

Compartmental epidemiological models

® models for spread of the epidemic in population divided into several disjoint
compartments or classes (e.g. susceptible S, infected I, recovered R and
vaccinated V individuals)

® population size - either constant N or time-varying (N(t), t > 0)

® deterministic case - e.g. systems of difference equations; systems of ODEs

® stochastic case - e.g. multidimensional Markov chains in discrete or
continuous time; systems of SDEs governed by Brownian motion or some
other Lévy process

® models depend of several parameters - the most important is the contact
rate, governing the dynamics of transition from susceptible to infected classes
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Introduction to epidemic modeling

SARS-CoV-2 - key terms in epidemic dynamics

® contact rate (53)

the expected number of adequate contacts of infectious individual per day; an
adequate contact between susceptible and infected individual is one that is
sufficient for the transmission of infection

® basic reproduction number (Ro)

the expected number of secondary infections produced by a single infected
individual in a disease-free population; Ry = f(f8) for a specific function f

e effective reproduction number (R.)

the expected number of secondary infections produced by a single infected
individual in a population made up of both susceptible and non-susceptible
hosts; R.(t) = Ro - =IO f(8) - =IO}

NG N(t)
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Introduction to epidemic modeling

SARS-CoV-2 - effective reproduction number
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(Arroyo-Marioli et al., 2021)
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Deterministic SIRV model

SIRV model - compartments

the human population is divided into four mutually exclusive compartments:

® S - susceptible individuals

® | - infected individuals

® R - recovered individuals

® V - vaccinated individuals

® the total population size at time ¢ > 0is N(¢t) = S(t) + I(¢t) + R(t) + V (¢)

Figure 1: Scheme of SIRV model with temporary immunity
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Deterministic SIRV model
SIRV model - system of ODEs and interpretation of

parameters

as(t) = </\f k—p— sl ) £+ aV(t +7R(t)> dt

Iy = Nﬂgt>1(t)( (t) + 8V () — (k1 + O)I(¢ )) dt

dR(t) = (0I(t) = (r +7)R(?)) dt

V() = (pS( )= (5 +a+ N<t)I(t))V(t)) dt

Parameter  Description Units

A birth rate per day
153 contact rate per day
p vaccination rate within class S per day
0 effectiveness of vaccination [0,1]
y rate of immunity loss in class R per day
«a rate of immunity loss in class V' per day
0 recovery rate per day
K natural death rate per day
K1 disease-induced death rate per day
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Deterministic SIRV model
SIRV model - natural assumptions

® number of organisms which can survive regarding to the resources available in
the ecosystem is limited - carrying capacity of the ecosystem (K)

® from the perspective of modeling, for spread of the epidemic it is reasonable to
consider positive and bounded process, i.e. for every t > 0:

® (S(t),1(t),R(t),V(t)) € R}

® processes S(t), I(t), R(t), V(t) have a lower and an upper bound
0<S<S(t)<S<K
0<I<It)<I<K
0<R<Rt)<R<K
0<V<VHt) <V <K
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Stochastic SIRV model
Motivation for modeling contact rate

® stochasticity in epidemic models usually comes from the modeling of the
contact rate 3

® usual approaches for modeling 3:
® 3 — B(t), where B(t) is some appropriately chosen time-dependent

(e.g. a piecewise constant) function, e.g. (Pardoux, 2021)

® B3dt — B+ dBy, where (By, t > 0) is standard Brownian motion, e.g.
(Pordevi¢ et al., 2021a, 2021b)

® Bdt —» B(t), where (8(t), t > 0) follows the Ornstein-Uhlenbeck
process

dp(t) = —6(B(t) — b) dt + o dBx,
0,b,0 >0, e.g. (Allen, 2017)
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Stochastic SIRV model
Model for contact rate in SIRV model

® based on the time-changed Lévy noise introduced in

Di Nunno, G., & Sjursen, S. (2014). BSDEs driven by time-changed Lévy
noises and optimal control. Stochastic Processes and their Applications,
124(4), 1679-1700.

® chosen model for contact rate is time-dependent function with added noise
driven by the random measure y:

Bdt — B(t)dt + / ot (z)p(dt, dz),
R
where p is the mixture of a conditional Brownian measure B on [0,7] x {0}

and a centered doubly stochastic Poisson measure H on [0,T] % Ro,
Ry := R\ {0}, and therefore

ﬁdt — ﬁ(t)dt + O't(O)dBt + / 0'15(,2“)Itl(d't7 dz)

Ro
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Stochastic SIRV model
Driving random measure

* (Q,F,P) - a complete probability space

e X =[0,T]xR=([0,7] x {0}) U ([0,T] x Rg), T'> 0
® Bx - Borel o-algebra on X

® AC X -anelement A in Bx

° \:= ()\B, )\H) - a two dimensional stochastic process such that each
component X, I = B, H satisfies

(i) AL>0P-a.s. forallt €[0,7)
(i) limpoP (|Afyn — At| > €) =0 for all & > 0 and almost all ¢ € [0, 7]

(i) E [fOT AL dt} < o0
L - space of all processes A := ()\B, )\H) satisfying (i)-(iii)
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Stochastic SIRV model
Driving random measure

® random measure A on X:
T T
A(A) ::/ 1{(,5,0)6A}(t))\?dt+/ / 1a(t, 2)v(dz) N dt,
0 o JRrg

where v is a deterministic, o-finite measure on the Borel sets of Rg satisfying

/ 2*v(dz) < oo
Ro

® AP(A) - restriction of A to [0, T] x {0}
AT (A) - restriction of A to [0,7] x Ro
A(A) = AP(AN[0,T] x {0}) + AT (AN0,T] x Ro)

e FM _ g-algebra generated by values of A
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Stochastic SIRV model
Driving random measure

Definition (Di Nunno & Sjursen, 2014)

B is a signed random measure on Borel sets of [0,7] x {0} satisfying:
() P(B(A) <z | FY) =P (B(A) <z |AB(A) =& (
[0,7] x {0}

(i) B (A1) and B (As) are conditionally independent given F* whenever A; and
Ay are disjoint

, et ER,AC

% AB(A)>

H is a signed random measure on Borel sets of [0,T] x Ry satisfying:
(ii)) P(H(A) =k | FY) =P (H(A) = k| A¥(A)) = ALAE A7) o ¢
N,A C[0,7] x Rg

(iv) H (A1) and H (A>) are conditionally independent given F* whenever A; and
Ay are disjoint

(v) B and H are conditionally independent given F*.

® (i) - conditional on A, B is a Gaussian random measure
e (iii)- conditional on A, H is a Poisson random measure
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Stochastic SIRV model

Driving random measure

Definition (Di Nunno & Sjursen, 2014)
The random measure . on the Borel subsets of X is defined by

u(A) = B(AN[0,T] x {0}) + H(AN[0,T] xRo), ACX
where H := H — A" is a measure given by

H(A) := H(A) — A" (A), A C[0,T] x Ro.
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Stochastic SIRV model
Driving random measure

® properties of u:
* E[B(A) | FA =0&E[H(A) | FA =A% (A) =
E [ILL(A) | ]:A] =0
* E[B(A)? | FA] = AB(A) & E [ﬁ(A)Q | fA] = AH(A) =
E [u(A)? | FA] = A(8)
* conditionally on FA | for disjoint A and Ay p(A1) and p(Ay) are
orthogonal

® . is a martingale with respect to the following filtrations:
o Fr={F}l' te€|0,T]} is the filtration generated by u(A),
ACI0,t] xR
* G={G, te[0,T)}, G =F/VFr
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Stochastic SIRV model
Driving random measure

® random measures B and H are related to a specific form of time-change for
Brownian motion and pure jump Lévy process:

B; = B([0,] x {0}), AP := /t Ads, tel0,T)

t
nt._// H(ds,dz), Aff::/Afds, t€[0,7)
0

Theorem (Serfozo, 1972)
Let W = (W, t € [0,T]) be a Brownian motion and N = (N, t € [0,T]) be a
centered pure jump Lévy process with Lévy measure v. Assume that both W and N
are independent of A. Then B satisfies (i) and (it) if and only if, for any t > 0

4 Wiz,
and n satisfies (4it) and (iv) if and only if for any t > 0

d
Nt :N[\{‘I'
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Stochastic SIRV model

Building stochastic SIRV model

® contact rate model:

Bdt —  Bt)dt+ o(0 dBt+/ oe(2) H (dt, dz)

Bdt — Bt dt—i—//at p(dt, dz),

® SIRV system of ODEs:

ds(t) = ()\ —k—p— %](t)) S(t) + aVi(t) + 7R(t)) dt
a1t) = (IO +6V) - (s +OI1) dt

dR(t) = (01(t) — (k+)R(t)) dt

dv(t) = <pS(t) —(kta+t ;T@I(t))\/(t)) dt
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Stochastic SIRV model ‘
SIRV model driven by random measure 1

ds(t) = ((A o= R)S() — %S(t)[(t) LVt + vR(t)) it
— [ oz S@)
/'[R t( ) (t)

dI(t) = (16((?) (S(t) + 8V (1)) — (k1 + e)) I(t) dt

=

" / SIS0 + 5V (O] 1% () (1)

dR(t) = (0I(t) — (k +)R(1)) dt

av (1) = (psu) (k) (D) — 6]6((’;))v<t>f<t>> dt

V(t)
_/]R Ut(z)(sml(t) w(dt, dz)
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Stochastic SIRV model
SIRV model - analysis of the solution

Theorem

The following statements hold:

@ Since the capacity of the population is bounded by a positive constant K, it
follows that

K, A> K
limsup N(t) = K1 =< N(0), A=k
G063 0, A< K.

@ For any initial value (S(0),1(0), R(0),V(0)) € (0, K]* there exist a unique

global solution ((S(¢),I(t), R(t),V (t)),t > 0) of the SDE system (1) that
almost surely remains in (0, K]*.
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Stochastic SIRV model
SIRV model - outline of the proof (1) ‘

® by solving the differential equation for N (t) and by applying the L'Hospital
rule, for A > k it follows:

t

N(@t) <e ™ [ N(0) —i—//\S(s)e”Sds

0
1
Kt
limsup N (¢) < limsup M < A limsup S(t) < K
t—o0 t— oo Ker Kt

® furthermore, by summing all four equations from system (1), under natural
assumption k1 > K, it follows:

dAN(t) = (AS(t) — kN (t) — (k1 — K)I(t)) dt
b (k1 2 k)
AN(t) < (AS(t) — kN(t)) dt < (A — k)N (t)dt
1
N(t) < N(0)et®=™
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Stochastic SIRV model
SIRV model - outline of the proof (2) ‘

® the existence and uniqueness of solution of system (1) for any initial value
(S(0), 1(0), R(0), V(0)) € RY on [0, 70), where o is the explosion time,
follows from (Jacod, 1971)

® in order to prove that the solution of system (1) is global, it needs to be
proven that 7o = oo P-a.s.

® for each k > ko define the stopping time

7 = inf {t € [0,70) : min {S(t), I(t), R(t), V(£)}

IN

max {S(t), I(t), R(t), V(t)

>
where ko > 0 is a constant large enough such that S(0), I(0), R(0), V(0)
belong to the interval [1/ko, ko] and inf @ = oo

—
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Stochastic SIRV model
SIRV model - outline of the proof (2) ‘

® note that 71 increases as k — oo and denote lim 7% = 7o
k— o0

® if 7o = oo P-a.s., then 79 = oo P-a.s., which means that
(S(t), I(t), R(t),V(t)) P-a.s. remains in [0, K]* for all t >0

® the proof that 7oc = co P-a.s. follows by assuming that there exist a pair of
constants 7' > 0 and € € (0, 1) such that P(7oc <T) > ¢, which leads to
contradiction

® technical details of the proof after assumption P(7o0 < T) > &:

® define a twice continuously differentiable function
Y(S,I,R,V)=(S—1-1log(S))+ (I —1-1log(1))+
(R—1-1log(R))+ (V—-1-1log(V)),

where the dependence of S, I, R and V on t is omitted
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Stochastic SIRV model
SIRV model - outline of the proof (2) ‘

® by applying the multidimensional 1t8’s formula for semimartingales (Protter,
2005) to Y, it follows that for every ¢ > 0

aY(S.LRV)S S <<1 - X1(t)> AX () + le(t) (dX(t))Z) +Cl, e

X=S8,I,R,V

where the quadratic variation of y comes from the "jump part" of the
application of 1td's formula:

3 (X(s) — X(s—) — (log X (s) — log X (s—)) — (1 - X(i)> AXS) <

0<s<t
< Gi[X, X]e < Cilu, e < 0,
and where
C=C1+Cy+Cs+Cy
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Stochastic SIRV model
SIRV model - outline of the proof (2) ‘

® under some technical assumptions

S()+I()+R()+V() (t)§~
s T RO v | < K 2)

[fo )\Bds—i—fo fR ai( l/(dz)Afds} < Ko,

K,

N(t) < max

due to positivity of (S, I, R, V) process and non-negativity of its
parameters, it follows that

EY (S(re AT), I(ts AT),R(tx ANT),Y (1 ANT))] <
E[Y (5(0),1(0), R(0), V(0))] + N(T),
where N(T) is finite quantity depending on T and
E[Y (5(0), 1(0), R(0), V(0))]+N(T) > & min {k: — 1~ log (k), % 14 log (k)}
® by letting k — oo it follows that
E[Y (5(0),1(0), R(0), V(0))] + N(T) > oo,
which gives a contradiction, i.e. 7oc = o0 P-a.s.
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Stochastic SIRV model
SIRV model - outline of the proof (2)

® the set
™ = {(S(t), I(t), R(t),V(t)): S(t),1(t),R(t),V(t) >0 & N(t) < K}

is a positively invariant set of the system (1) for every ¢ > 0, i.e. if the
system starts from I'*, almost surely it never leaves I'*
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Long-term behavior of epidemic

SIRV model - extinction

Theorem
If
t
=il
liiris;lp%/ ((/\EJS(O))2> ds < w P—a.s.,
0
and

A
lim sup L <o P-—as.,
t—oo

than for any initial value (S(0), 1(0), R(0),V(0)) € I'* it follows that

I(t) >0 P—a.s. ast— oo,
R(t) =0 P—a.s. ast— oo,
while

limsup(S(¢t) +V(t)) = K1 P—a.s.

t—o0
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Long-term behavior of epidemic
Extinction - outline of the proof

® according to the boundedness of the process for contact rate and the
boundaries (2), by applying the 1t8's formula for semimartingales to the
function In (I(¢)) and dividing everything by ¢, it follows:

In(I(t)) _ In(Z(0)) ‘ K? M (t)
¢ S n +/O (M(O)()\SB)Q—(I'Q-FQ)) d8+kT,

where k is a generic constant and

//as plds,dz), (M, My, = A,

is a martingale vanishing at 0

M, M
® as limsup “fl%f < oo P-a.s., according to SLLN from (Mao, 2007) it
t—o0
follows that M
lim M) =0 P—a.s.
t—oo
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Long-term behavior of epidemic

Extinction - outline of the proof

® then it follows that

, In(I(t)) _ .. 1 /’f 1 2(k1 + 0)
lim sup ——— < lim sup — ds — <0 P-a.s.
il T =P ) (e.(0)aE)2 K>

and therefore, due to positivity of 1(t),
lim I(t) =0 P—a.s.

t— o0

® by solving the ODE for recovered class explicitly, we obtain that

R(t) = e~ ("1 (R(O) + / t 01(s)el" e ds)
0

and by applying the L'Hospital rule it follows that
lim R(t) =0 P—as.
t—o0

® at last, it follows that

limsup(S(t) +V(t)) = K1 P—as.

t—o0
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Long-term behavior of epidemic

Persistence in mean - definition

the virus remains persistent in population if there is at least one infected
individual communicating with susceptible subpopulation

mathematical concept of persistence - persistence in mean
® the system (1) is said to be persistent in mean if

t
lim inf[7(¢)] = lim inf %/ I(s)ds >0, P—as.
0

t—o0 t— o0
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Long-term behavior of epidemic

SIRV model - persistence in mean

'heorem
If . N
o L 2 By2 ~A+p(0—1) 2KiS
= <
hglogft/o 05 (0)(AS)"ds < B 5oV’
T B(D)
< < < >
B_hglot.}f NG’ S<S), VSV(#), Vi>0,
and

. A
lim sup Lo P-— a.s.,
t—oo

than for any initial value (S(0), 1(0), R(0),V(0)) € I'* it follows that

liminf[I(¢)] >0 P — a.s.

t—oo
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Long-term behavior of epidemic
Persistence in mean - outline of the proof

® by applying 1t6 formula to In (I(¢)) ant dividing the result by t it follows that

timing L0 5 By g <()\ +p(6 —1))S — F(t) — (f_gw - m) [1(t)]

t—o0 K t—oo

1 / Os(z V(S) — S S, az
+tO/R/ (350 - o) 1(s)utds, )

S—o6v. .1 [, Bea
T hgglfg/o o5 (0)(A5)7ds
where
F(t) = S(t) ; 5(0) N I(t) ;I(O) +e V() ; v (0) N /1—7—7 R(t) ; R(0)

and [I(t)] comes from the definition of F'(t) after substituting the integral
forms for S(t), I(t), V(t) and R(¢):
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Long-term behavior of epidemic

Persistence in mean - outline of the proof

1 Os\Z V(S) — S S,az
i1 [ [oeysa - areutas,a)

® from some natural properties of model parameters it follows that

liminf1(f) > BEVA+p0 1)

S—
t—o0 Oy —ri(k+7v) =
t
__ kle+) §_‘iznminf1/ o2 (0)(\E)? ds
B(6y — ki(k+7)) 2K{ toe t ),

which is positive if

t . _ 2
ligi;}f%/o 03(0)()\§)2ds§ﬂ)\+pfj D ;I_{léﬁz P—a.s.
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Long-term behavior of epidemic

Extinction and persistence - remarks

® the condition

A
lim sup Lo P-as.
t— o0

can be interpreted as the "long term' comparability of the time-change
process and the real time

® it can be replaced by a stronger assumption of ergodicity of the integrands in
the absolutely continuous time-change processes A® and AH (Serfozo, 1972)

® this condition is always fulfilled when the time-change process is slowing down
the real time, i.e. when A(t) <t forallt>0

STORM Workshop, Oslo, 5-8/9/2022  Time-changed SIRV model for epidemic of SARS-CoV-2 virus 33/45



Simulations
Simulation study - contact rate model .

® natural assumptions for contact rate model

® non-negativity
® mean-reverting property
® presence of jumps and clustering

® an example of model for contact rate - time-changed CIR jump diffusion

® SDE for the CIR jump diffusion (without time-change):

db(t) = —0 (b(t) — B) dt + o+/b(t) dB; + kZ,

where (Z;, t > 0) is the compound Poisson process, k is the intensity of the
jumps, o is the volatility coefficient, 3 is the long-term level of the process and
0 is the speed of reversion to 3
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Simulations

Simulation study - time-change model

® choice of the absolutely-continuous time-change processes in Brownian and
CPP part of the CIR jump diffusion - integrated process (A¢, t > 0):

@ integrated periodic function
At = asin (kt)
@ integrated compound Poisson process (CPP) with drift

Ny
Ae=dt+ Y Xy
k=0
© integrated inverse-Gaussian subordinator with Lévy measure
2
w(dz) = \/2(;_?67& /242 2,8 >0

@ integrated Ornstein-Uhlenbeck process
d)\z = —9()% — /.L) + O'dBt

® algorithm for building the time-changed process from simulated time-change
process and simulated base process is given in (Magdziarz et al., 2007)
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Simulations
Contact rate - CIR jump diffusion time-changed by
integrated periodic function

o MNP =)\ =asin(kt), a=15 k=4

Time-changed CIR jump diffusion

jump CIR
© - --- time-changed jump CIR

time-changed process value

0.0 0.5 1.0 15 2.0

time
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Simulations
Contact rate - CIR jump diffusion time-changed by
integrated CPP with drift
N¢
* AP =\ =dt+» Xy CPP with drift, where d = 0.05, X; ~U(~1,0.6),

k=0
(N, t > 0) Poisson process with intensity A = 2

Time-changed CIR jump diffusion

~ -

g jump CIR

= © - --- time-changed jump CIR
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Simulations
Contact rate - CIR jump diffusion time-changed by
integrated |G subordinator and CPP with drift

o )P IG(«, 9) subordinator, « =1, =5
Ny
* A =dt+ ) Xi CPP with drift, d = 0.05, X; ~U(~1,0.6), (N, t > 0)

k=0
Poisson process with intensity A = 2

Time-changed CIR jump diffusion

jump CIR
©o - --- time-changed jump CIR

-] A (o
“ \—/Nw

0.0 0.5 1.0 15 20

[l

time-changed process value

time
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Simulations
Contact rate - CIR jump diffusion time-changed by
integrated |G subordinator and OU process

* \? IG(a, §) subordinator, a =1, 6 =5

o d\f! = —0(\ — 1) + cdB; Ornstein-Uhlenbeck process, § = 5, 1. = 0,
oc=3

Time-changed CIR jump diffusion

~

g jump CIR

§ © — --- time-changed jump CIR
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Simulations
Contact rate - CIR jump diffusion time-changed by
integrated OU process

A=

o d\f! = —0(\ — 1) + cdB; Ornstein-Uhlenbeck process, § = 5, 1 = 0,
oc=3

Time-changed CIR jump diffusion

time-changed process value
4 5
Il Il
=

time
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Simulations

Contact rate
time-changed CIR diffusion without jumps

time-changed process value

timechanged process value

STORM Workshop, Oslo, 5-8/9/2022

Time-changed CIR diffusion (sin)

CIR
- time-changed CIR
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Time-changed CIR diffusion (IGsub)
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Time-changed CIR diffusion (CPP)
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Time-changed CIR diffusion (OU)
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Simulations

Contact rate - remarks and questions

® if 0 is the absorbing barrier of the process describing the dynamics of contact
rate, the extinction appears after the first hitting time to 0

® if 0 is reflecting barrier and the process is mean-reverting, then the epidemic
model is always in the persistence regime?

® what about extinction?

® recovering

® contact rate process?

® time-change process?
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Recovery problems

Recovering contact rate

contact rate is not directly observable, it is "hidden" within the observable
epidemiological data (number of susceptible, infected, vaccinated and
recovered individuals)

model-based recovery - depends on the model and its parameters (Mummert,
2012), (Pollicot et al., 2012)

the simplest model for 3(t), according to (Pollicot et al., 2012) is

I+ 1)
5 = Tosm

in (Pollicot et al., 2012) the recovery algorithm for 5(¢) in SIR model with
permanent immunity is based on the inverse problem for the SIR system

for SIRV model with non-permanent immunity the inverse problem yields the
implicit result for 5(t) - numerical procedures?
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Recovery problems

Recovering the time-change process

® if the day-by-day values of the contact rate are recoverd and the model
without time-change is proposed, what would be the right choice of the
time-change processes?

® (Winkel, 2001)
for a given Lévy process (Y(t), t > 0) and an independent time-change
process (7(t), t > 0), the case when both processes are completely
determined by time-changed process (X (7(t)), t > 0) are identified
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