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Chapter 2

Representatives

In applied research it is often necessary to represent a given set of data
by a single datum which, in some sense, encompasses most of the features
(properties) of the given set. The quantity commonly used is the well-known
arithmetic mean of the data. For example, a student’s grade point average
can be expressed by arithmetic mean, but it wouldn’t be appropriate to
represent the average rate of economics growth during several years in such
a way (see [31]).

In order to determine a best representative of a given set, first one has to
decide how to measure the distance between points of the set. Of course, one
could use some standard metric function, but various applications show (see
e.g. [17]) that to measure the distance it is more useful to take a function
which does not necessarily satisfy all the properties of a metric function (see
[17, 37]).
Definition 2.1. A function d : Rn × Rn → R+, which satisfies1

(i) d(x, y) = 0⇔ x = y

(ii) x 7→ d(x, y) is continuous on Rn for every fixed y ∈ Rn

(iii) lim
‖x‖→∞

d(x, y) = +∞ for every fixed y ∈ Rn

will be called a distance-like function.
It is readily seen that every `p metric, p ≥ 1, is a distance-like function,

but an important example is the well known least squares (LS) distance-like
function dLS(x, y) = ‖x− y‖2, where ‖ ‖ is the usual 2-norm.2

1We use the following notation: R+ = {x ∈ R : x ≥ 0} and R++ = {x ∈ R : x > 0}.
2If there is no risk of misapprehension, throughout the text we are going to use ‖ ‖ to

denote the Euclidean, i. e. the 2-norm ‖ ‖2.

1



2 2. REPRESENTATIVES

In general, a distance-like function is neither symmetric nor does it satisfy
the triangle inequality. But, as shown by the following lemma, given a finite
set of data points3 A = {ai = (ai1, . . . , ain) : i = 1, . . . ,m} ⊂ Rn with weights
w1, . . . , wm > 0, there exists a point c? ∈ Rn such that the sum of its weighted
d-distances to the points of A is minimal.
Lemma 2.2. Let A = {ai : i = 1, . . . ,m} ⊂ Rn be a set of data points with
weights w1, . . . , wm > 0, let d : Rn × Rn → R+ be a distance-like function,
and let F : Rn → R+ be the function given by

F (x) =
m∑
i=1

wi d(x, ai) . (2.1)

Then there exists a point c? ∈ Rn such that

F (c?) = min
x∈Rn

F (x) . (2.2)

Proof. Since F (x) ≥ 0, x ∈ Rn, there exists F ? := inf
x∈Rn

F (x). Let (ck) be
some sequence in Rn such that lim

k→∞
F (ck) = F ?. Let us show that the

sequence (ck) in Rn is bounded. In order to do this, assume the contrary,
i. e. that there exists a subsequence (ck`) such that ‖ck`‖ → ∞. Then,
according to properties (ii) and (iii) from Definition 2.1, it follows that

lim
‖ck`‖→∞

F (ck`) = +∞, and therefore the function F cannot attain its infimum.

Finally, the sequence (ck), being bounded, has a convergent subsequence
(ckj ), and let c? be its limit point. Then F (c?) = F ( lim

j→∞
ckj ) = lim

j→∞
F (ckj ) =

lim
k→∞

F (ck) = F ?, showing that (2.2) holds true.

Remark 2.3. Note that for a global minimum point c? ∈ Rn and all x ∈ Rn,

F (x) =
m∑
i=1

wi d(x, ai) ≥
m∑
i=1

wi d(c?, ai) = F (c?) , (2.3)

holds true, and the equality holds if and only if x = c?, or some other point
satisfying (2.4).

Lemma2.2 enables the following definition:
3We are going to use upper indices for elements ai ∈ Rn, and the lower indices for the

coordinates of elements in Rn.



2.1. Representative of data sets with one feature 3

Definition 2.4. Let d : Rn × Rn → R+ be a distance-like function. A best
representative of the set A with weights w1, . . . , wm > 0, with respect to the
distance-like function d, is any point

c? ∈ argmin
x∈Rn

m∑
i=1

wi d(x, ai) . (2.4)

The notation (2.4) suggests that best representative might not be unique,
i.e. there might exist more best representatives of the set A.

In this chapter we shall consider the two most commonly used represen-
tatives of a data set— arithmetic mean and median.

2.1 Representative of data sets with one feature

A set of data without weights, with a single feature is usually interpreted as
a finite subset A = {a1, . . . , am} of real numbers ai ∈ R, i = 1, . . . ,m.

The two most frequently used distance-like functions on R are the
LS distance-like function and `1 metric, also known as the Manhattan or
taxicab metric function (see e.g. [6, 7, 16, 27])

dLS(x, y) = (x− y)2, [LS distance-like function]
d1(x, y) = |x− y| . [`1 metric function]

Exercise 2.5. Check whether

d1(x, y) = d2(x, y) = d∞(x, y) = dp(x, y), p ≥ 1, x, y ∈ R,

holds, where dp is the p-metric on R (see e.g. [38]).

Exercise 2.6. Show that the function dLS is not a metric function on R,
but the function d1 is a metric on R.

2.1.1 Best LS-representative

In case of the LS distance-like function, the function (2.1) becomes

FLS(x) :=
m∑
i=1

(x− ai)2 , (2.5)

and because it is a convex function and F ′LS(c?LS) = 0 and F ′′LS(x) = 2m > 0
for all x ∈ R, it attains its global minimum at the unique point

c?LS = argmin
x∈R

m∑
i=1

dLS(x, ai) = 1
m

m∑
i=1

ai . (2.6)



4 2. REPRESENTATIVES

Hence, the best LS-representative of the set A ⊂ R is the ordinary arithmetic
mean4, and it has the property (cf. Remark 2.3) that the sum of squared
deviations to the given data is minimal:

m∑
i=1

(x− ai)2 ≥
m∑
i=1

(c?LS − ai)2, (2.7)

where the equality holds for x = c?LS .
As a measure of dispersion of a data setA around the arithmetic mean c?LS ,

in statistics literature [? ] one uses the variance of data (average squared
deviation)

s2 = 1
m−1

m∑
i=1

(c?LS − ai)2. (2.8)

The number s is called the standard deviation.

Example 2.7. Given the set A = {2, 1.5, 2, 2.5, 5}, its arithmetic mean is
c?LS = 2.6.
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(a) Data points

c?
LS 2 3 4 5
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(b) Residuals
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20

25

(c) Function FLS

Figure 2.1: Arithmetic mean of the set A = {2, 1.5, 2, 2.5, 5}

Figure 2.1a shows the data and the arithmetic mean c?LS , Figure 2.1b
shows the so-called residuals (the numbers c?LS − ai), and Figure 2.1c depicts
the graph of the function FLS . Note that the graph is a parabola and
FLS(c?LS) = 7.7. What is the variance and what is the standard deviation of
this set?

What would happen if there were an outlier (strongly jutting datum)
among the data? How would it effect the best LS-representative (arithmetic
mean) of the set A? What would be the result if 5 were changed to 10?

4The problem of finding the best LS-representative of a data set occurs in the literature
as the least squares principle, which was proposed in 1795 by German mathematician Carl
Friedrich Gauss (1777–1855) while investigating the movements of celestial bodies, published
in Teoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium, Perthes
and Besser, Hamburg, 1809. One should also mention that in 1805 French mathematician
Adrien-Marie Legendre (1752–1833) was the first one to publish an algebraic procedure for
the least squares method.
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Exercise 2.8. Let c?LS be the arithmetic mean of the set A = {a1, . . . , am} ⊂
R. Show that

m∑
i=1

(c?LS − ai) = 0 .

Check this property for data in Example 2.7.

Exercise 2.9. Let A = {a1, . . . , ap} and B = {b1, . . . , bq} ⊂ R be disjoint
sets, and let a?LS and b?LS be their arithmetic means. Show that the arithmetic
mean of the union C = A ∪ B equals

c?LS = p
p+qa

?
LS + q

p+q b
?
LS .

Check the formula in several examples. What would the generalization
of this formula for n data sets A1, . . . ,An containing p1, . . . , pn elements
respectively, look like?

2.1.2 Best `1-representative

In case of the `1 metric, the function (2.1) becomes

F1(x) :=
m∑
i=1
|x− ai| . (2.9)

The next lemma shows that if A is a set of mutually different real numbers,
the function F1 attains its global minimum at the median of A (see e.g.
[25, 38]). The case when some data might be equal will be considered in
Section 2.1.3.
Lemma 2.10. Let A = {ai ∈ R : i = 1, . . . ,m} be a set of mutually different
data points. The function F1 given by (2.9) attains its global minimum at
the median of the set A.

Proof. Without loss of generality, we may assume that a1 < a2 < · · · < am.
Note that F1 is a convex piecewise linear function (see Figure 2.2c) and
therefore it can attain its global minimum at a single point in A or at all
points between two points in A.

For x ∈ (ak, ak+1) we have

F1(x) =
k∑
i=1

(x− ai)−
m∑

i=k+1
(x− ai) = (2k −m)x−

k∑
i=1

ai +
m∑

i=k+1
ai,

F ′1(x) = 2k −m.
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Thus, the function F1 decreases on intervals (ak, ak+1) for k < m
2 , and

increases for k > m
2 .

Therefore we have to consider two cases:

• if m is odd, i. e. m = 2p+1, the function F1 attains its global minimum
at the middle datum ap;

• if m is even, i. e. m = 2p, the function F1 attains its global minimum
at every point of the interval [ap, ap+1].

Hence, a best `1-representative of the set A ⊂ R is the median of A.

Note that the median of a set A may be either a set (a segment of real
numbers) or a single real number. If the median of A is a set it will be
denoted by MedA, and its elements by medA. The number medA has the
property (cf. Remark 2.3) that the sum of its absolute deviations to all data
is minimal, i. e.

m∑
i=1
|x− ai| ≥

m∑
i=1
|medA− ai| ,

and the equality holds if and only if x = medA.5

Example 2.11. Given the data set A = {2, 1.5, 2, 2.5, 5}, its median is
medA = 2. What is the sum of absolute deviations?
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(c) The function F1

Figure 2.2: Median of the set A = {2, 1.5, 2, 2.5, 5}

5The problem of finding the best `1-representative of a data set, appears in the literature
as the least absolute deviations principle, ascribed to Croatian scholar Josip Ruđer Bošković
(1711–1787), who posed it in 1757 in his article [2]. Due to complicated calculations,
for a long time this principle was neglected in comparison to the Gauss least squares
principle. Not until modern computers came about did this take an important place in
scientific research, in particular because of its robustness: in contrast to the Gauss least
squares principle, this principle ignores the outliers (strongly jutting data) in data sets.
Scientific conferences devoted to `1 methods and applications are regularly held in Swiss
city Neuchâtel, and the front page of the conference proceedings shows a Croatian banknote
depicting the portrait of Josip Ruđer Bošković, [4].
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Figure 2.2a shows the data and median c?1, Figure 2.2b shows the residuals
(numbers c?1− ai), and Figure 2.2c depicts the graph of the function F1. Note
that F1 is a convex piecewise linear function and that F1(c?1) = 4.

How would the median of this set change if data contained an outlier?
What would be the median if the datum 5 were replaced by 10, and what if
it were replaced by 100?

To find the median of a set A, first one has to sort the elements. Then,
if the number of elements is odd, median is the middle element, and if the
number of elements is even, median is any number between the two middle
elements. For example,6

Med{3, 1, 4, 5, 9} = {4},
Med{−1, 1, −2, 2, −5, 5, −9, 9} = [−1, 1],

but med{3, 1, 4, 5, 9} = 4 and med{−1, 1, −2, 2, −5, 5, −9, 9} ∈ [−1, 1].
Remark 2.12. Note that the median of a data set A can always be chosen
among the elements of A itself. This means that median, as the best `1-
representative of a set, can always be an element of that set, contrary to
the case of the arithmetic mean as the best LS-representative. In some
applications this fact might be useful.

Note also that a half of elements of the set A are placed to the left, and
the other half to the right of the median of A.

As a measure of dispersion of a data set A around the median, in statistics
literature [23, 24] one uses the Median of Absolute Deviations from Median
(MAD):

MADA = 1.483 med
i=1,...,m

|ai − med
j=1,...,m

aj |, (2.10)

where the constant 1.483 was introduced in [23].
Example 2.13. The relative magnitudes of elements of the set

A = {9.05, 2.83, 3.00, 3.16, 4.12, 3.00, 3.50}

can be better compared after mapping the set A to the unit interval [0, 1]
using the linear map

ϕ(x) = x− a
b− a

, where a = minA, b = maxA. (2.11)

6The median of a set can be obtained using Mathematica instruction Median[]. If the
median of the given set happens to be an interval, the instruction Median[] will give the
midpoint of that interval.
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We get ϕ(A) = {1., 0., 0.027, 0.053, 0.207, 0.027, 0.108}, and it is readily
seen that a1 ∈ A is by far the largest element in A.

Following [23], this can be ascertained more exactly by first using (2.10)
to find MAD=0.489 and define the new set

Ã = {ãi = |ai −med
j=1,...,m

aj |
/

MAD : ai ∈ A}

= {12.04, 0.67, 0.33, 0, 1.96, 0.33, 0.69}.

The element ai ∈ A for which ãi > 2.5 is considered, according to [23], to be
an outlier. So, in our example, only the element a1 = 9.05 is an outlier in A.

In statistics literature [? ], median of a set A is tied to the first quartile
(the element of A placed at 1/4 of the sorted data) and the third quartile (the
element of A placed at 3/4 of the sorted data). What are the first and third
quartile of the data set in previous example?

2.1.3 Best representative of weighted data

In practical applications it is sometimes necessary to equip the data with
some weights. In this way we associate to each datum its impact or the
frequency of occurrence. For example, to find the student’s average grade
point in the exams he passed, the data set is {2, 3, 4, 5} and weights are the
frequencies of occurrence of each grade.

As with data without weights, one can prove that the function

FLS(x) =
m∑
i=1

wi(x− ai)2

attains its global minimum at the unique point

c?LS = argmin
x∈R

m∑
i=1

wi dLS(x, ai) = 1
W

m∑
i=1

wi a
i, W =

m∑
i=1

wi ,

which we call weighted arithmetic mean [25].
In case of `1 metric function, the function (2.1) looks like

F1(x) =
m∑
i=1

wi |x− ai| , (2.12)

and it attains its global minimum at weighted median Med
i

(wi, ai) of the
set A, as shown by the following lemma.
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Lemma 2.14 ([25]). Let a1 < · · · < am be a set of data points with weights
w1, . . . , wm > 0, and let I = {1, . . . ,m} be the pertinent index set. Denote

J := {ν ∈ I :
ν∑
i=1

wi ≤
m∑

i=ν+1
wi},

and for J 6= ∅, denote ν0 = max J . Then:

(i) If J = ∅, (i. e. w1 >
m∑
i=2

wi), then the minimum of F1 is attained at the

point α? = a1.

(ii) If J 6= ∅ and
ν0∑
i=1

wi <
m∑

i=ν0+1
wi, then the minimum of F1 is attained at

the point α? = aν0+1.

(iii) If J 6= ∅ and
ν0∑
i=1

wi =
m∑

i=ν0+1
wi, then the minimum of F1 is attained at

every point α? in the segment [aν0 , aν0+1].

Proof. Notice that on each interval

(−∞, a1), [a1, a2), . . . , [am−1, am), [am,∞)

F is a linear function with slopes of these linear functions being consecu-
tively dν , ν = 0, . . . ,m, where

d0 = −
m∑
i=1

wi ,

dν =
ν∑
i=1

wi −
m∑

i=ν+1
wi = dν−1 + wν + wν+1 , ν = 1, . . . ,m− 1 ,

dm =
m∑
i=1

wi .

If J = ∅, then 2
ν∑
i=1

wi−
m∑
i=1

wi > 0 for every ν = 1, . . . ,m, and d0 < 0 < dν ,
ν = 1, . . . ,m. It follows that the function F1 is strongly decreasing on
(−∞, a1) and strongly increasing on (a1,+∞). Therefore the minimum of F1
is attained for α? = a1.

If J 6= ∅, note that ν0 = max{ν ∈ I : dν ≤ 0}. Since dν+1−dν = 2wν+1>
0, d0 < 0, and dm > 0, the sequence (dν) is increasing and satisfies

d0 < d1 . . . < dν0 ≤ 0 < dν0+1 < . . . < dm. (2.13)
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If dν0 < 0, i. e. 2∑ν0
i=1 ωi <

∑m
i=1 ωi, from (2.13) it follows that F1 is

strongly decreasing on (−∞, aν0+1) and strongly increasing on (aν0+1,+∞).
Therefore the minimum of F1 is attained for α? = aν0+1.

If dν0 = 0, i. e. 2∑ν0
i=1wi = ∑m

i=1wi, from (2.13) it follows that F1 is
strongly decreasing on (−∞, aν0), it is constant on [aν0 , aν0+1], and strongly
increasing on (aν0+1,+∞). Therefore the minimum of F1 is attained at every
point α? in the segment [aν0 , aν0+1].

Hence, a best `1-representative of a weighted data set is the weighted
median Med

i
(wi, ai). Note that weighted median can also be a set (a segment

of real numbers) or a single real number. Weighted median med
i

(wi, ai) is
any number with the property that the sum of weighted absolute deviations
to all data is minimal, i. e.

m∑
i=1

wi |x− ai| ≥
m∑
i=1

wi |med
j

(wj , aj)− ai| ,

and the equality holds for x = med
j

(wj , aj) (see also Remark 2.3).
The next corollary shows that Lemma2.10 is just a special case of

Lemma2.14.
Corollary 2.15. Let a1 ≤ a2 ≤ · · · ≤ am, m > 1, be a set of data points
with weights w1 = · · · = wm = 1. Then:

(i) if m is odd (m = 2k + 1), then the minimum of the function F1 is
attained at the point α? = ak+1;

(ii) if m is even (m = 2k), the minimum of the function F1 is attained at
every point α? of the segment [ak, ak+1].

Proof. First, note that in this case the set J from Lemma2.14 is always
nonempty.

Let m = 2k + 1. According to Lemma2.14 (ii),

ν0 = max{ν ∈ I : 2ν −m ≤ 0} = max{ν ∈ I : ν ≤ k + 1
2} = k,

dν0 = dk = 2k −m = 2k − 2k − 1 < 0,

and therefore α? = ak+1.
Let m = 2k. According to Lemma2.14 (iii),

ν0 = max{ν ∈ I : 2ν −m ≤ 0} = max{ν ∈ I : ν = k} = k,

dν0 = dk = 2k −m = 2k − 2k = 0 .
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It follows that the minimum of the function F1 is attained at every point α?
of the segment [ak, ak+1].

In general, determining weighted median is a very complicated numerical
procedure [9, 25]. For this purpose there are numerous algorithms in the
literature [9].
Example 2.16. Weighted median of a set A ⊂ R with weights being positive
integers, can be determined similarly as for median of a set without weights.
First we sort the elements of the set A. Next we form the multiset where
each element of A is repeated according to its weight, and then we take the
middle element of that multiset. A set A = {a1, . . . , am} with weights w :=
{w1, . . . , wm} will be called a weighted set, and its median will be denoted
by medwA. For example, the weighted median of the set A = {3, 1, 4, 5, 9}
with weights w = {3, 1, 3, 2, 2} is the middle element of the multiset (here
written as a finite sequence)

1, 3, 3, 3, 4, 4, 4, 5, 5, 9, 9.

In our example, the weighted median of weighted set A with weights w
is medwA = 4. What is the first and third quartile of the weighted set A?

2.1.4 Bregman divergences

Let us consider yet another class of distance-like functions which is important
in applications. Following [17, 37] we introduce the following definition:
Definition 2.17. Let D ⊆ R be a convex set (i. e. an interval) and let
φ : D → R+ be a strictly convex continuously differentiable function on
intD 6= ∅. The function dφ : D × intD → R+ defined by

dφ(x, y) = φ(x)− φ(y)− φ′(y)(x− y) (2.14)

is called the Bregman divergence.
It is not difficult to see that such a function is indeed a distance-like

function. Geometrically, for a given x ∈ D, dφ(x, y) represents the difference
between the value φ(x) and the value of the linear function, whose graph is
the tangent line at the point (y, φ(y)), y ∈ D, at the point x (see Figure 2.3).
In the past ten years, distance-like functions of this kind have been intensely
investigated and applied in operations research, information theory, nonlinear
analysis, machine learning, wireless sensor network, etc. (see e.g. [? ? ]).
Exercise 2.18. Show that for φ : R→ R+, φ(x) := x2, the Bregman diver-
gence becomes the LS distance-like function.
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φ

dφ(x, y)

xy

Figure 2.3: Geometric meaning of Bregman divergence

Example 2.19. Bregman divergence for φ : R++ → R+, φ(x) = − ln x, is
known as the Itakura-Saito divergence given by

dIS(x, y) = x

y
− ln x

y
− 1. (2.15)

Let us find a corresponding best representative of the set A = {ai ∈
R++ : i = 1, . . . ,m}. In this case the function (2.1) becomes

F (x) =
m∑
i=1

dIS(x, ai) =
m∑
i=1

( x
ai
− ln x

ai
− 1

)
.

Since F ′(x) =
m∑
i=1

1
ai
−m

x , the point c?IS = m
( m∑
i=1

1
ai

)−1 is the unique stationary

point, and since F ′′(x) = m
x2 > 0, F is a convex function and c?IS is its only

point of global minimum. Note that c?IS is the harmonic mean of the set A.

Example 2.20. With the convention 0 · ln 0 = 0, Bregman divergence for
φ : R+ → R+, φ(x) = x ln x, is known as the Kullback-Leibler divergence
given by

dφ(x, y) = x ln x
y
− x+ y. (2.16)

Let us find a corresponding best representative of the set A = {ai ∈ R+ :
i = 1, . . . ,m}. In this case the function (2.1) becomes

F (x) =
m∑
i=1

dKL

m∑
i=1

dKL(x, ai) = x

ai
− ln x

ai
− 1 .

Since F ′(x) =
m∑
i=1

ln x
ai
, the point c?KL = m

√
m∏
i=1

ai is the unique stationary

point, and since F ′′(x) = m
x > 0 for all x ∈ R++, F is a convex function,

and the point c?KL is its only point of global minimum. Note that c?KL is the
geometric mean of the set A.
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Remark 2.21. The above distance-like functions can be generalized to data
sets with n ≥ 1 features (see e.g. [17, 37]).

2.2 Representative of data sets with two features

A set with two features without weights is usually interpreted as a finite
set A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2, and geometrically it can be
visualized as a finite set of points in the plane. In the next section we give a
short historical overview of looking for a best representative of a data set
with two features, and possible applications.

2.2.1 Fermat–Torricelli–Weber problem

Let A,B,C ∈ R2 be three non-collinear points in the plane (see Figure 2.4).

c?LS

c?2

c?1
A B

C

Figure 2.4: Fermat problem

The Fermat’s problem consists in finding the point c?2 ∈ R2 with the
property that the sum of its Euclidean, i. e. `2-distances to the vertices of
the triangle 4ABC is minimal. The point c?2 is called the geometric median
of the points A,B,C, and can be obtained (see e.g. [19]) as the intersection
of the so-called Simpson’s lines (see Figure 2.5a), or as the intersection of
the so-called Torricelli’s circles (see Figure 2.5b). The same problem can also
be treated for a different distance-like functions: in the sense of physics—
theTorricelli’s problem, and in the sense of econometrics—the Weber’s
problem (see e.g. [6]).

The point c?LS ∈ R2 (see Figure 2.4), with the property that the sum of
its LS-distances (i. e. the sum of squared Euclidean distances) to vertices of
the triangle 4ABC, is minimal, is called the centroid or the Steiner point
(this is related to the centre of mass in physics), and is obtained as the
intersection of medians of the triangle, i. e. line segments joining vertices to
the midpoints of opposite sides.
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(a) Simpson’s lines

c?
2

A B

C A1

B1

C1

(b) Torricelli’s circles

c?
2

A B

C

K1

K2

K3

Figure 2.5: Fermat’s problem

The point c?1 ∈ R2 (see Figure 2.4), with the property that the sum of its
`1-distances to the vertices of the triangle 4ABC is minimal, is called the
median of the set {A,B,C}.

In general, one can consider a finite set of points in Rn and an arbitrary
distance-like function d. The problem of finding best d-representative has
many applications in various fields: telecommunication (optimal antenna
coverage problem, discrete network location), public sector (optimal covering
problem), economy (optimal location of consumer centers), hub location
problems, robotics, optimal assignation problems, hourly forecast of natural
gas consumption problem, etc. [6, 20, 28].

Exercise 2.22. Given the triangle 4ABC with vertices A = (0, 0), B =
(6, 0), and C = (4, 3), find the vertices A1, B1, C1 of the equilateral triangles
constructed on the sides of triangle 4ABC, and find the intersection of line
segments joining the points A–A1, B–B1, and C–C1 as in Figure 2.5a.

Solution: A1 = (7.598, 3.232), B1 = (−0.598, 4.964), C1 = (3.,−5.196);
Geometric median: c?2 = (3.833, 1.630).

Exercise 2.23. Given the triangle 4ABC with vertices A = (0, 0), B =
(6, 0), and C = (4, 3), find the vertices A1, B1, C1 of the equilateral triangles
constructed on the sides of triangle 4ABC, construct the circumcircles of
these triangles, and find the intersection of these circles as in Figure 2.5b.
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Solution: A1 = (7.598, 3.232), B1 = (−0.598, 4.964), C1 = (3., −5.196);
K1 = ((5.866, 2.077), 2.082); K2 = ((1.134, 2.655), 2.887); K3 = ((3., −1.732), 3.464);
Geometric median: c?2 = (3.833, 1.630).

2.2.2 Centroid of a set in the plane

Let A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2 be a set without weights in the
plane. The centroid c?LS of the set A is the solution to the optimization
problem

argmin
c∈R2

m∑
i=1

dLS(c, ai) , (2.17)

where dLS(a, b) = d2
2(a, b) = ‖a− b‖2. The point c?LS is the point at which

the function

FLS(x, y) =
m∑
i=1
‖c− ai‖2 =

m∑
i=1

(
(x− xi)2 + (y − yi)2), c = (x, y).

attains its global minimum. FLS(x, y) is the sum of squared Euclidian, i. e.
`2-distances from the point c = (x, y) to the points ai ∈ A. From (2.7) it
follows that

FLS(x, y) =
m∑
i=1

(
(x− xi)2 + (y− yi)2) ≥ m∑

i=1
(x̄− xi)2 +

m∑
i=1

(ȳ− yi)2, (2.18)

where

x̄ = 1
m

m∑
i=1

xi , ȳ = 1
m

m∑
i=1

yi ,

and the equality holds if and only if x = x̄ and y = ȳ. Therefore, the solution
to the global optimization problem (2.17) is the centroid of the set A, i. e.
the point c?LS = (x̄, ȳ).

Hence, the centroid of a finite set A of points in the plane is the point
whose first and second coordinates are the arithmetic means of the first and
second coordinates of points in A, respectively.
Example 2.24. Check that for the given points a1 = (0, 0), a2 = (6, 0), and
a3 = (4, 3), the centroid of the set {a1, a2, a3} is the point c?LS = (10

3 , 1).
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2.2.3 Median of a set in the plane

Median of a set of points A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2 without
weights, is a solution to the optimization problem

argmin
c∈R2

m∑
i=1

d1(c, ai) . (2.19)

This is every point at which the function

F1(x, y) =
m∑
i=1
‖c− ai‖1 =

m∑
i=1

(|x− xi|+ |y − yi|), c = (x, y),

attains the global minimum. F1(x, y) is the sum of `1-distances from c = (x, y)
to the points ai ∈ A. From (2.9) it follows that

F1(x, y) =
m∑
i=1

(|x−xi|+|y−yi|) ≥
m∑
i=1
|med

k
xk−xi|+

m∑
i=1
|med

k
yk−yi| , (2.20)

and the equality holds if and only if x = med
k
xk i y = med

k
yk. Therefore, the

solution to the global optimization problem(2.19) is a median of the set A,
which is a point

(med
k
xk,med

k
yk). (2.21)

Hence, the median of a finite set A of points in the plane is any point
whose first and second coordinates are medians of the first and second
coordinates of points in A, respectively.
Example 2.25. Check that for the three points A1 = (0, 0), A2 = (6, 0),
and A3 = (4, 3), median of the set {A1, A2, A3} is the point c?1 = (4, 0).

Example 2.26. Median of the set A = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 4),
(4, 3)} ⊂ R2 is any point in the square [2, 3] × [2, 3] (see Figure 2.6), since
median of the first coordinates of the data is med{1, 1, 2, 3, 3, 4} ∈ [2, 3], and
median od the second coordinates is med{1, 3, 2, 1, 4, 3} ∈ [2, 3].

Exercise 2.27. Change the position of just one point of the set A in previous
example in such a way that median becomes a single point, a segment or a
rectangle.
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1 2 3 4

1

2

3

4

Figure 2.6: Median of the set A = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 4), (4, 3)}

2.2.4 Geometric median of a set in the plane

Geometric median c? of the set A = {ai = (xi, yi) : i = 1, . . . ,m} ⊂ R2

without weights is the solution to the global optimization problem

c? = argmin
c∈R2

m∑
i=1

d2(c, ai). (2.22)

The point c? is the point at which the function

F2(x, y) =
m∑
i=1
‖c− ai‖ =

m∑
i=1

√
(x− xi)2 + (y − yi)2, c = (x, y) (2.23)

attains the global minimum. F2(x, y) is the sum of `2-distances between the
point c = (x, y) ∈ R2 and points ai ∈ A, and in this case the variables x
and y cannot be separated. Therefore the solution to the global optimization
problem (2.22) cannot be written down explicitly.
Example 2.28. In order to find the geometric median of the set of three
points a1 = (0, 0), a2 = (6, 0), and a3 = (4, 3), one has to solve the following
optimization problem:

argmin
(x,y)∈R2

F2(x, y),

F2(x, y) =
√
x2 + y2 +

√
(x− 6)2 + y2 +

√
(x− 4)2 + (y − 3)2 .

Using Mathematica computation system, we can solve this optimization
problem like this: first define the function

In[1]:= F2[x_, y_]:= Sqrt[x^2 + y^2] + Sqrt[(x-6)^2 + y^2]
+ Sqrt[(x-4)^2 + (y-3)^2]

We can try to solve our problem as a global optimization problem using the
Mathematica-module
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In[2]:= NMinimize[F2[x, y], {x, y}]

According to [40], the module NMinimize[] can sometime find only a lo-
cal minimum. In such a case we can try to solve the problem as a local
optimization problem by using the Mathematica-module

In[2]:= FindMinimum[F2[x, y], {x, 1}, {y, 2}]

using some good initial approximation close to the solution. In our case we
obtain c?2 = (3.833, 1.630).
Remark 2.29. The best known algorithm for searching for the geometric
median by solving the optimization problem (2.22) is the Weiszfeld algorithm
(see [12, 33? ]). This is an iterative procedure which arose as a special case
of simple-iteration method for solving systems of nonlinear equations (see
e.g. [? ? ? ]).

First we find partial derivatives of the function (2.23), and make them
equal to zero:

∂F2
∂x

=
m∑
i=1

x− xi
‖c− ai‖

= x
m∑
i=1

1
‖c− ai‖

−
m∑
i=1

xi
‖c− ai‖

= 0,

∂F2
∂y

=
m∑
i=1

y − yi
‖c− ai‖

= y
m∑
i=1

1
‖c− ai‖

−
m∑
i=1

yi
‖c− ai‖

= 0,

which can be written as

x = Φ(x, y), y = Ψ(x, y), (2.24)

where

Φ(x, y) =

m∑
i=1

xi
‖c−ai‖

m∑
i=1

1
‖c−ai‖

, Ψ(x, y) =

m∑
i=1

yi
‖c−ai‖

m∑
i=1

1
‖c−ai‖

. (2.25)

After choosing an initial approximation (x0, y0) from the convex hull of
the set A, (x0, y0) ∈ conv(A), the system (2.24) can be solved by successive
iteration method

xk+1 = Φ(xk, yk), yk+1 = Ψ(xk, yk), k = 0, 1, . . . (2.26)

Example 2.30. Let the data set A ⊂ R2 be defined like this:

In[1]:= SeedRandom[13]
sig = 1.5; m = 50; cen = {4,5};
podT = Table[cen + RandomReal[NormalDistribution[0, sig], {2}],
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{i, m}];
podW = RandomReal[{0,1}, m];
Show[Table[ListPlot[{podT[[i]]},

PlotStyle -> {PointSize[podW[[i]]/20], Gray}], {i,m}],
PlotRange -> {{0,8},{0,8}}, AspectRatio -> Automatic]

Each datum in Figure 2.7 is equipped with weight according to the point-
size (small disc) representing the datum. Check that the centroid is the point
c?LS = (4.151, 4.676), median c?1 = (4.350, 4.750), and the geometric median
c?2 = (4.251, 4.656).

2 4 6 8

2

4

6

8

Figure 2.7: Set of weighted data A

Exercise 2.31. Let the set A = {(xi, yi) ∈ R2 : i = 1, . . . , 10}, be given by
the table

i 1 2 3 4 5 6 7 8 9 10
xi 9 6 8 1 1 4 4 3 9 10
yi 5 5 5 2 5 8 1 8 8 4

Depict the set A in the coordinate plane and find its centroid, median, and
geometric median.
Hint: Use the following Mathematica-program
In[1]:= SeedRandom[2]

A = RandomInteger[{1, 10}, {10, 2}]
ListPlot[A, ImageSize -> Small]

Print["Centroid = ", Mean[A]]
Print["Median = ", Median[A]]

Psi[x_, y_] := Sum[Norm[{x, y} - A[[i]]], {i, Length[A]}]
Print["Geometric median:"]

NMinimize[Psi[x, y], {x, y}]

Solution: c?LS = (5.5, 5.1), c?1 = (5, 5), c?2 = (6, 5).
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2.3 Representative of data sets
with several features

In practical applications data can have more then one or two features as was
mentioned at the beginning of the Introduction, where several such examples
were listed. Since the number of features represents the dimension of the
data, it will be necessary to find representatives also for data of arbitrary
high dimension.

We want to find a point in Rn which represents, as good as possible,
a given set of points A = {ai = (ai1, . . . , ain) ∈ Rn : i = 1, . . . ,m} without
weights.

In case of LS distance-like function, the best representative of the set A
is its centroid (barycenter)7

c?LS = argmin
c∈Rn

m∑
i=1

dLS(c, ai) = argmin
c∈Rn

m∑
i=1
‖c− ai‖2 = 1

m

m∑
i=1

ai,

and the corresponding minimizing function is

FLS(c) =
m∑
i=1
‖c− ai‖2 .

In case of `1 metric function, a best representative of the set A is its
median

c1 = med
i
ai =

(
med
i
ai1, . . . ,med

i
ain
)
∈ MedA = argmin

c∈Rn

m∑
i=1
‖c− ai‖1,

and the corresponding minimizing function is

F1(c) =
m∑
i=1
‖c− ai‖1.

2.3.1 Representative of weighted data

Let A be the set of data points with weights w1, . . . , wm > 0. If d is the
LS distance-like function, the best representative of the set A with weights
w1, . . . , wm > 0 is its weighted centroid (barycenter)

c?LS = argmin
c∈Rn

m∑
i=1

wi dLS(c, ai) = argmin
c∈Rn

m∑
i=1

wi ‖c− ai‖2 = 1
W

m∑
i=1

wi a
i,

7Recall that ‖ ‖ denotes the Euclidean, i. e. `2-norm.
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i. e.

c?LS =
(

1
W

m∑
i=1

wi a
i
1, . . . ,

1
W

m∑
i=1

wi a
i
n

)
[coordinate-wise], (2.27)

where W =
m∑
i=1

wi, and the corresponding minimizing function is

FLS(c) =
m∑
i=1

wi ‖c− ai‖2 . (2.28)

If d is the `1 metric function, a best representative of the set A with
weights w1, . . . , wm > 0 is its weighted median

c?1 = med
i

(wi, ai) =
(

med
i

(wi, ai1), . . . ,med
i

(wi, ain)
)
∈ MedA

= argmin
c∈Rn

m∑
i=1

wi ‖c− ai‖1, (2.29)

and the corresponding minimizing function is

F1(c) =
m∑
i=1

wi ‖c− ai‖1. (2.30)

Namely,

F1(c) =
m∑
i=1

wi ‖c− ai‖1 =
m∑
i=1

wi
( n∑
k=1
|ck − aik|

)
=

n∑
k=1

( m∑
i=1

wi |ck − aik|
)

=
n∑
k=1

m∑
i=1

wi |ck − aik|

≥
n∑
k=1

m∑
i=1

wi |med
j

(wj , ajk)− a
i
k| =

m∑
i=1

n∑
k=1

wi |med
j

(wj , ajk)− a
i
k|

=
m∑
i=1

wi ‖c?1 − ai‖1 = F (c?1),

where med
j

(wj , ajk) is the weighted median of data {a1
k, . . . , a

m
k } with weights

w1, . . . , wm > 0.
Exercise 2.32. Show, similarly as was shown for the weighted median, that
the function FLS given by (2.28), attains its global minimum at the weighted
centroid c?LS given by (2.27).
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2.4 Representative of periodic data

Often it is the case that one has to find best representative of a data set
describing events which are periodic in nature, and this is indeed frequently
discussed in the literature. For instance, air temperature at certain measuring
point during a year, water-level of a river at certain measuring place, seismic
activities in specific area over some extended period of time, the illuminance
i. e. the measure of the amount of light during a day, etc., are examples of
such phenomena. Mathematically speaking, one has to deal with data sets
on a circle. Namely, if we represent such a data set on the real line, as we did
before, then the data corresponding to the beginning and the end of the same
year, for example, would appear far away from each other, although they
belong to the same year period. One has to define a distance-like function
for such data sets also, and find the center of such data.
Example 2.33. Let ti ∈ A represent the position of the small clock handle
on a clock with 12 marks (see Figure 2.8a). Distances in A will be measured
as the elapsed time from the moment t1 to t2:

d(t1, t2) =
{
t2 − t1, if t1 ≤ t2
12 + (t2 − t1), if t1 > t2

.

For example, d(2, 7) = 5, but d(7, 2) = 12 + (−5) = 7. Note that this
function is not symmetric.

(a) Clock
12

3

6

9

(b) Unit circle

A1(t1)

A2(t2)
A3(t3)

t1

t2

t3

Figure 2.8: Data set on a circle

Example 2.34. Let ti ∈ A represent the position of the small clock handle
on a clock with 12 marks (see Figure 2.8a). Define the function measuring
the distances on A as the length of the time interval from moment t1 to t2:

d(t1, t2) =
{
|t2 − t1|, if |t2 − t1| ≤ 6
12− |t2 − t1|, if |t2 − t1| > 6

.
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For example, d(2, 9) = 12− 7 = 5 and d(2, 7) = 7− 2 = 5. Check whether
this defines a metric function on the set A.

2.4.1 Representative of data on the unit circle

In general, let (Ti, wi), i = 1, . . . ,m, be a data set where Ti denotes the
moment over M ≥ 1 successive years during which the event we investigate
occurred, and let wi > 0 denote the intensity of the event at the moment Ti.
The time moments Ti can denote days (for example for water level of a
river at some point), hours (air temperatures at some place), or seconds
(earthquake moments). We want to identify the moment at which this event
is most notable. See [5, 18] for various aspects and applications of such data.

If the moments T1, . . . , Tm were considered as simple time series, then
would the data from, say the beginning of a year and the end of the same
year, be far apart, although they belong to the same season, i. e. time of
the year. Therefore, to each year we allot an interval of length 2π, and
to a sequence of M successive years the interval [0, 2πM ]. In this way the
sequence T1, . . . , Tm is transformed into the sequence T ′1, . . . , T ′m ∈ [0, 2πM ].

In our discussion, important is only the moment of the year, and not
the particular year in which the event occurred. Therefore, instead of the
sequence (T ′i ) we define a new sequence ti ∈ [0, 2π], i = 1, . . . ,m, where

ti = 2π T ′i (mod 2π), i = 1, . . . ,m, (2.31)

(the remainder of dividing 2π T ′i by 2π). The number ti ∈ [0, 2π] represents
the moment which is ti/2π -th part of a year apart from January 1.

Using the sequence (2.31) we define the following data set:

A = {a(ti) = (cos ti, sin ti) ∈ R2 : ti ∈ [0, 2π], i = 1, . . . ,m} ⊂ K , (2.32)

where K = {(x, y) ∈ R2 : x2 + y2 = 1} is the unit circle.
In the following lemma we define a metric on the unit circle and prove

its basic properties (see also [14, 18])
Lemma 2.35. Let K = {a(t) = (cos t, sin t) ∈ R2 : t ∈ [0, 2π]} be the unit
circle in the plane. The function dK : K ×K → R+ defined by

dK(a(t1), a(t2)) =
{
|t1 − t2|, if |t1 − t2| ≤ π ,
2π − |t1 − t2|, if |t1 − t2| > π ,

(2.33)

is a metric on K, and can equivalently be defined as

dK(a(t1), a(t2)) = π −
∣∣ |t1 − t2| − π ∣∣, t1, t2 ∈ [0, 2π] . (2.34)
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Proof. It is straightforward to see that (2.33) and (2.34) are equivalent
definitions of the function dK . Let us show that dK is a metric on K.

First we show that dK(a(t1), a(t2)) ≥ 0 for all t1, t2 ∈ [0, 2π]. Let
t1, t2 ∈ [0, 2π]. Then

0 ≤ |t1 − t2| ≤ 2π ⇒ −π ≤ |t1 − t2| − π ≤ π ⇒
∣∣ |t1 − t2| − π ∣∣ ≤ π

⇒ dK(a(t1), a(t2)) = π −
∣∣ |t1 − t2| − π ∣∣ ≥ 0 .

Next we show that dK
(
a(t1), a(t2)

)
= 0 if and only if a(t1) = a(t2):

If a(t1) = a(t2) then either t1 = t2 or |t1 − t2| = 2π. In both cases
dK(a(t1), a(t2)) = 0.
Conversely, if dK(a(t1), a(t2)) = 0, then

π =
∣∣ |t1 − t2| − π ∣∣ . (2.35)

If |t1 − t2| ≤ π, then from (2.35) it follows that π = π − |t1 − t2|, and hence
t1 = t2, thus a(t1) = a(t2). If |t1 − t2| ≥ π, then from (2.35) it follows
that π = |t1 − t2| − π, i. e. |t1 − t2| = 2π, which is possible if and only if
a(t1) = a(t2).

Finally, dK
(
a(t1), a(t2)

)
≤ dK

(
a(t1), a(t3)

)
+ dK

(
a(t3), a(t2)

)
for all

t1, t2, t3 ∈ K. The equality holds if a(t3) lies on the arc between a(t1)
and a(t2). Otherwise, the strict inequality holds true.

Using the metrics (2.33), we define the best representative of the set A
on the unit circle, as follows:
Definition 2.36. The best representative of the set A = {a(ti) ∈ K :
ti ∈ [0, 2π], i = 1, . . . ,m} and weights w1, . . . , wm > 0, with respect to the
metric dK defined by (2.33), is the point c?(t?) = (cos t?, sin t?) ∈ K, where

t? = argmin
τ∈[0,2π]

m∑
i=1

wi dK(a(τ), a(ti)), a(τ) = (cos τ, sin τ) ∈ K, (2.36)

i. e. t? ∈ [0, 2π] is the point at which the function Φ: [0, 2π]→ R+ defined by

Φ(τ) =
m∑
i=1

wi dK(a(τ), a(ti)) (2.37)

attains its global minimum.
Note that the function Φ does not have to be neither convex nor differ-

entiable, and generally it may have several local minima. Therefore, this
becomes a complex global optimization problem. In order to solve the GOP
(2.36) one can apply the optimization algorithm DIRECT [8, 15, 29].
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Example 2.37. Let t1, . . . , tm be a random sample from Gaussian normal
distribution N (4, 1.2), and let A = {a(ti) = (cos ti, sin ti) ∈ R2 : i =
1, . . . ,m} with weighs wi > 0, i = 1, . . . ,m, be a data set. The set A is
depicted as black points in Figure 2.9a, and the function τ 7→ dK(a(τ), a(t1))
and the corresponding function Φ are shown in Figures 2.9b and 2.9c.

(a) Data

t1

t2

t3a(t1
)

a(t2 )

a
(t

3
)

0 Π�2 Π

3 Π

2
2Π

Π�2

Π

(b) τ 7→ dK(a(τ), a(t1))

Π�2 Π

3 Π

2
2Π

25

30

35

40

(c) τ 7→ Φ(τ)

Figure 2.9: Data and the distances on the unit circle

2.4.2 Burn diagram

In order to graphically represent periodic events, it is appropriate to use
Burn diagram (see e.g. [34]). In the Burn diagram, points are represented as
T = r (cos t, sin t), where (r, t) are the polar coordinates, i. e. t is the angle
(in radians) between the x-axes and the radius vector of T , and r is the
distance from T to the origin.
Example 2.38. Figure 2.10a shows earthquake positions in wider area of Os-
ijek since 1880. Points in the Burn diagram (Figure 2.10b) identify individual
earthquakes, where the distance to the origin represents the year when the
earthquake happened, position on the circle reflects the day of the year, and
the size of the point (small disc) corresponds to the magnitude. Figure 2.10
shows that the last stronger earthquake in close vicinity of Osijek happened
by the end of winter 1922, located at geographic position (18.8, 45.7) (close
to village Lug, some twenty kilometers to the northeast of Osijek).
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✶✶

a) Earthquake positions

1890

1920

1950

1980

2000

b) Time distribution of earthquakes

Figure 2.10: Earthquakes in wider area of Osijek since 1880



Chapter 3

Data clustering

Definition 3.1. Let A be a set of m ≥ 2 elements. A partition of the set A
into 1 ≤ k ≤ m disjoint nonempty subsets π1, . . . , πk such that

k⋃
j=1

πj = A, πr ∩ πs = ∅, r 6= s, |πj | ≥ 1, j = 1, . . . , k, (3.1)

is called a k-partition of the set A, and will be denoted by Π = {π1, . . . , πk}.
The elements of a partition are called clusters, and the set of all partitions
of A containing k clusters satisfying (3.1) will be denoted by P(A; k).

Whenever we are going to talk about a partition of some set A we will
always assume that it consists of subsets as described in Definition 3.1.
Theorem 3.2. The number of all partitions of the set A consisting of k
clusters is equal to the Stirling number of the second kind

|P(A, k)| = 1
k!

k∑
j=1

(−1)k−j
(
k

j

)
jm. (3.2)

In the proof of Theorem3.2 we are going to use the well-known in-
clusion–exclusion principle (see e.g. [10, p. 156]) written in the following
form:
Lemma 3.3 (Inclusion–exclusion formula). Let X1, . . . , Xk be subsets of a
finite set X. The number of elements of X not belonging to any of the subsets
X1, . . . , Xk equals∣∣∣ k⋂

i=1
Xi

∣∣∣ = |X| −
∑

1≤i≤k
|Xi|+

∑
1≤i<j≤k

|Xi ∩Xj | − · · ·+ (−1)k|X1 ∩ · · · ∩Xk|

where Xi denotes the complement X \Xi.

27
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Instead of a proof of Lemma 3.3, let us look at an example. Consider the
set X containing 16 elements, and its three subsets: X1 (7 elements inside the
red circle), X2 (7 element inside the blue circle), and X3 (8 elements inside
the green circle), as shown in Figure 3.1a. The intersections X1 ∩X2 and
X1 ∩X3 have 4 elements each, and the intersection X2 ∩X3 has 5 elements
(see Figures 3.1b, c, d). Finally, the intersection X1 ∩X2 ∩X3 has 3 elements
(see Figure 3.1a). Therefore

|X1 ∩X2 ∩X3| = |X| − (|X1|+ |X2|+ |X3|) + (|X1 ∩X2|+ |X1 ∩X3|+ |X2 ∩X3|)−
− |X1 ∩X2 ∩X3|

= 16− (7 + 7 + 8) + (4 + 4 + 5)− 3 = 4.

2 4 6 8 10 12
0

2

4

6

8

10

(a) X; X1, X2, X3
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(b) X1 ∩X2
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2
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8
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(c) X1 ∩X3

2 4 6 8 10 12
0

2
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6

8

10

(d) X2 ∩X3

Figure 3.1: Number of elements of the set X not belonging to any of the subsets
X1, X2, X3

Proof of Theorem3.2. Without loss of generality, let A = {1, . . . ,m}, and
let Π(k) = {π1, . . . , πk} be its k-partition where πj ⊂ A are disjoint nonempty
subsets of A. Let us denote the number of all such partitions by |P(A; k)|
and define the functions f : A → J , J = {1, . . . , k}, by

f(x) = j, for x ∈ πj .

The number of these functions equals |P(A; k)|, and by permuting these k
sets we obtain the number of all surjections from A onto J :

k! |P(A; k)|. (3.3)

On the other hand, the number of all surjections from A onto J equals
the number of all functions from A to J , minus the number of those functions
which are not surjective.

Let X = JA be the set of all functions from A to J . The number of
all such functions is |X| = km—the number of ways of selecting k, not
necessarily distinct items from a collection of m items.

A function from A to J is not surjective if:
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1. its image does not contain one element of J . The set Xi of all functions
whose image does not contain the element i ∈ J consists of exactly
(k−1)m functions (the number of ways of selecting k−1, not necessarily
distinct items from a collection of m items), and the set ⋃1≤i≤kXi of
all functions missing exactly one element of J consists of

(k
1
)
(k − 1)m

functions;

2. its image does not contain two distinct elements of J . The set⋃
1≤i<j≤k(Xi ∩Xj) of all such functions contains

(k
2
)
(k − 2)m elements

(the number of ways of selecting k − 2, not necessarily distinct items
from a collection of m items, for every pair of distinct elements of J);

etc.
A function from A to J is surjective if and only if it does not belong

to any of the sets X1, . . . , Xk, i.e. if and only if it belongs to the set
k⋂
i=1

Xi.
Using Lemma3.3 we obtain the following number of all surjective functions
from A to J :∣∣∣ k⋂
i=1

Xi

∣∣∣ = |X| −
∑

1≤i≤k
|Xi|+

∑
1≤i<j≤k

|Xi ∩Xj | − · · ·+ (−1)k|X1 ∩ · · · ∩Xk|

= km −
(
k

1

)
(k − 1)m +

(
k

2

)
(k − 2)m − · · ·+ (−1)k

(
k

k

)
(k − k)m

=
k∑
j=0

(−1)j
(
k

j

)
(k − j)m [s := k − j]

=
0∑
s=k

(−1)k−s
(

k

k − s

)
sm [for s = 0, sm = 0]

=
k∑
s=1

(−1)k−s
(

k

k − s

)
sm [since

(n
r

)
=
( n
n−r

)
]

=
k∑
s=1

(−1)k−s
(
k

s

)
sm

[j:=s]=
k∑
j=1

(−1)k−j
(
k

j

)
jm.

Using (3.3) we obtain (3.2), proving the theorem.

In particular, Theorem3.2 gives:
for k = 2: |P(A; 2)| = 1

2(2m − 2) = 2m−1 − 1,

for k = 3: |P(A; 3)| = 1
2

(
1− 2m + 3m−1

)
.
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Example 3.4. The number of all k-partitions of a set A, as described
in Definition 3.1, can be rather huge. Table 3.1 shows the approximate
number of all k-partitions of the set A for m = 5, 10, 50, 1200, 106, and
k = 2, 3, 4, 5, 6, 8, 10.

≈ |P(A; k)| k = 2 k = 3 k = 4 k = 5 k = 6 k = 8 k = 10

m = 5 15 25 10 1 – – –
m = 10 511 9330 34105 42525 22827 750 1
m = 50 1015 1023 1029 1033 1036 1041 1044

m = 1200 10361 10572 10721 10837 10931 101079 101193

m = 106 10301030 10477120 10602058 10698968 10778148 10903085 10106

Table 3.1: Approximate number of all k-partitions for various numbers m = |A|
and numbers k = 2, 3, 4, 5, 6, 8, 10 of clusters.

Example 3.5. Consider the set A ⊂ R2, shown in Figure ??a, containing
m = 1200 elements. Table 3.1 shows the approximate number of all its
k-partitions with k = 2, 3, 4, 5, 6, 8 and 10 clusters.

Provided that one defines the criterion that the better partition is the
one whose clusters are more compact and better separated, one could ask the
question of defining the globally optimal (i.e. best) partition.

3.1 Optimal k-partition

Let A be a set of m ≥ 2 elements with n ≥ 1 features. Since each feature is
usually expressed by a number, one can, without loss of generality, always
assume that a set A with n ≥ 1 features is a subset of Rn, A ⊂ Rn. For
example, consider a group of 100 students with respect to their gender and
height. Assigning the number 0 to males and 1 to females, and expressing
heights in centimeters, one can identify this set of students with a subset
of R2.

If we defined some distance-like function d : Rn × Rn → R+, we could
have defined a measure of compactness and of good separation of clusters in
a partition Π = {π1, . . . , πk} of the set A ⊂ Rn, as follows:

1. find a center cj ∈ argmin
x∈Rn

∑
ai∈πj

d(x, ai) in every cluster πj ;

2. for every cluster πj determine its total dissipation (the sum of distances
from the points of πj to the center cj) F(πj) = ∑

ai∈πj
d(cj , ai);
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3. the sum
k∑
j=1
F(πj) defines a measure of compactness and of good

separation of clusters in the partition Π, and represents an objective
function in this optimization problem (see (3.5)).

Figure ?? shows a partition for k = 2, 3, 4, 5, 6, 7, and 8 clusters and
corresponding values of the LS-objective function. Notice that enlarging
the number of clusters, decreases the objective function value. For example,
Figure ??c shows one of many (see Table 3.1) 3-partitions of the set A. For
this partition the objective function FLS attains the value 19 860. It is
plausible to ask whether this is the best 3-partition, or could one find a
3-partition with a smaller objective function value?

In general, we could pose at least some of the following questions:

1. Are the said objective functions the most appropriate ones for this
example?

2. What is the most appropriate number of clusters in a partition?

3. Do the partitions shown in Figure ?? have the smallest objective func-
tion values among all possible partitions with those numbers of clusters?

From the previous example it is evident that the answers to the above
questions won’t be easy ones. The question of the choice of the objective
function, as well as of the appropriate number of clusters in a partition,
depends on the previous statistical analysis of the data. For objective
functions, in this textbook, we are mostly going to use the LS distance-like
function and the `1 metric function. In Section ?? we will deal with the choice
of the most appropriate partition with spherical clusters, and in Section ??
with the choice of the most appropriate fuzzy-partition.

It needs to be said that the problem of finding an optimal partition is an
NP-hard problem, [38], of a non-convex optimization of, in general, a non-
differentiable function of several variables, which, in most cases, does have
a substantial number of stationary points. In general, it won’t be possible
to carry-out the search for an optimal partition by searching the whole set
P(A; k). In the present textbook we are going to deal with finding the
optimal partition with spherical clusters in Section ??, finding the optimal
partition with ellipsoidal clusters in Section ??, and finding the optimal
fuzzy-partition in Section ??.

In general, given some distance-like function d : Rn × Rn → R+, where
R+ = [0,+∞〉 (see Section 2), to each cluster πj ∈ Π one can associate its



32 3. DATA CLUSTERING

center
cj ∈ argmin

x∈Rn

∑
a∈πj

d(x, a). (3.4)

The quality of the partition determined by the objective function value
F : P(A; k)→ R+, is usually defined to be the sum over all clusters of the
sums of distances from the points of clusters to their centers. The globally
optimal k-partition (k-GOPart) is then considered to be the solution to
the following global optimization problem GOPart:

argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑
j=1

∑
a∈πj

d(cj , a). (3.5)

Theorem 3.6. Increasing the number of clusters in a partition does not
increase the value of the objective function F .

For the proof of this theorem see page 60.

3.1.1 Minimal distance principle and Voronoi diagram

The minimal distance principle (see Algorithm3.9 or (3.39)), is closely related
to the so-called Voronoi diagram or Dirichlet tessellation (see e.g. [1, 21, 40]).

Let d be the usual Euclidean metric in the plane R2, and let us consider
first the case of k = 2 clusters in the plane with centers c1 and c2. All
elements a ∈ A ⊂ R2 lying on the perpendicular bisector σ(c1, c2) of the
line segment c1c2 are equally distant from the centers c1 and c2. The line
bisector σ(c1, c2) is perpendicular to the segment c1c2 and divides the plane
R2 into two half-planes—Voronoi regions:

VR(c1) = {x ∈ R2 : d(c1, x) < d(c2, x)},
VR(c2) = {x ∈ R2 : d(c1, x) > d(c2, x)}.

The perpendicular bisector σ(c1, c2) represents the Voronoi diagram of the
set of centers {c1, c2} (see Figure 3.2a).

In the case of k = 3 clusters in the plane with centers c1, c2, and c3,
the perpendicular bisector σ(c1, c2) of the line segment c1c3 defines two
half-planes M(c1, c2) and M(c2, c1), the perpendicular bisector σ(c1, c3) of
the line segment c1c3 defines the half-planes M(c1, c3) and M(c3, c1), and
the perpendicular bisector σ(c2, c3) of the line segment c2c3 defines the half-
planes M(c2, c3) and M(c3, c2). Voronoi regions with centers c1, c2, and c3
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(a) k = 2

c1 c2

(b) k = 3

c1

c2

c3

(c) k = 6

Figure 3.2: Minimal distance principle and Voronoi diagram

are defined as:

VR(c1) = M(c1, c2) ∩M(c1, c3),
VR(c2) = M(c2, c1) ∩M(c2, c3),
VR(c3) = M(c3, c1) ∩M(c3, c2),

and the Voronoi diagram of the centers c1, c2, c3 is defined as (see Figure 3.2b)

V (c1, c2, c3) =
(
VR(c1)∩VR(c2)

)⋃(
VR(c1)∩VR(c3)

)⋃(
VR(c2)∩VR(c3)

)
where VR(c1) denotes the (topological) closure of VR(c1), and similarly for
other regions.

In general, for k clusters with centers c1, . . . , ck, the Voronoi regions are
defined as

VR(cj) = ⋂
s 6=j

M(cj , cs), j = 1, . . . , k,

and the Voronoi diagram is defined as the union of intersections of the
closures of Voronoi regions

V (c1, . . . , ck) =
⋃
s 6=j

VR(cj) ∩ V R(cs).

Note that the cluster π(cj), obtained by the minimal distance princi-
ple (3.39), lies in the Voronoi region VR(cj) bounded by the Voronoi diagram.

Figure 3.2c, generated by Mathematica computation system, shows the
Voronoi diagram for six centers.
Exercise 3.7. Define and draw Voronoi diagrams in case of `1 and `∞ metric
functions.

Exercise 3.8. Determine the Voronoi diagram for k = 3 by considering the
circle circumscribed to the triangle 4(c1, c2, c3). Can such line of thought
be applied for k > 3 also?
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3.1.2 k-means algorithm I

There is no method for successfully solving the GOP (3.5). Nevertheless, there
exists the well-known k-means algorithm giving locally optimal solution
which heavily depends on the choice of initial approximation. Choosing an
initial partition Π(0), the k-means algorithm finds in finitely many steps a
locally optimal partition. The algorithm is usually set up in two steps which
are iteratively successively repeated until the new partition does not differ
from the previous one.

Algorithm 3.9 (k-means algorithm I).
Step A: assignment step. Given a finite subset A ⊂ Rn and the set of points

z1, . . . , zk ∈ Rn, apply the minimal distance principle to determine
clusters πj , j = 1, . . . , k, to get the partition Π = {π1, . . . , πk},

πj := πj(zj) = {a ∈ A : d(zj , a) ≤ d(zs, a) for all s = 1, . . . , k}.

Step B: update step. For the given partition Π = {π1, . . . , πk} of the set A
determine cluster centers cj ∈ argmin

x∈Rn

∑
a∈πj

d(x, a), j = 1, . . . , k, and

calculate objective function value F(Π) according to (3.5);
Set zj = cj , j = 1, . . . , k;

Remark 3.10. It might happen that in Step A some elements a ∈ A lie on
the border between two or several clusters. The decision as to which cluster
should such elements be designated, can drastically influence the further
course of the iterative process (see [32]). An example of such a situation
occurs in the problem of defining optimal electoral districts (see Example ??).
Almost always it becomes necessary to divide the electorate of a city into
two or several electoral districts (in Croatia this is the case with the city of
Zagreb). We are going to consider this problem later, when discussing fuzzy
clustering of data in Section ??.

The usual convention for simple clustering of data is to put the datum,
which occurs on the border of two or several clusters, into the first cluster in
order.

Example 3.11. Let us determine, using the k-means algorithm, the LS-
optimal 3-partition of the set A = {0, 2, 4, 8, 9, 10, 12, 16} starting with the
initial partition Π(0) = {{0, 2, 4}, {8, 9}, {10, 12, 16}}.



3.1. Optimal k-partition 35

Iteration π1 π2 π3 c1 c2 c3 FLS(Π)
0 {0, 2, 4} {8, 9} {10, 12, 16} 2 8.5 12.67 27.17
1 {0, 2, 4} {8, 9, 10} {12, 16} 2 9 14 18
2 {0, 2, 4} {8, 9, 10} {12, 16} 2 9 14 18

Table 3.2: Searching for LS-optimal 3-partition of the set {0, 2, 4, 8, 9, 10, 12, 16}.
Results of Step A are colored blue and of Step B orange.

✶ ✶ ✶
0 2 4 8 9 10 12 16

Iteration 0: FLS(Π(0)) = 27.17

✶ ✶ ✶
0 2 4 8 9 10 12 16

Iteration 1: FLS(Π(1))) = 18

Figure 3.3: Searching for LS-optimal 3-partition of the set {0, 2, 4, 8, 9, 10, 12, 16}

Exercise 3.12. Using the k-means algorithm find the `1-optimal 3-partition
of the set from Example 3.11 starting with the same initial partition.

The following theorem shows that the sequence of objective function
values obtained by the k-means algorithm is monotonically decreasing (see
also Theorem ??).
Theorem 3.13. Let A ⊂ Rn be a set, d : Rn × Rn → R+ a distance-like
function, and F the objective function given by (3.5). Applying the k-means
algorithm, the value of objective function F is not going to increase.

Proof. Let Π(t) = {π(t)
1 , . . . , π

(t)
k } be a partition with centers c(t) ={c(t)

1 , . . . , c
(t)
k }

and F(Π(t)) be the corresponding objective function value.
Applying Step A (the minimal distance principle) to the set A with

centers c(t), we obtain a new partition Π(t+1) = {π(t+1)
1 , . . . , π

(t+1)
k } satisfying

F(Π(t)) =
k∑
j=1

∑
a∈π(t)

j

d(c(t)
j , a)

(Step A)
≥

k∑
j=1

∑
a∈π(t+1)

j

d(c(t)
j , a).

Next, applying Step B to each cluster π(t+1)
j (to determine new centers c(t+1)

j ),
we obtain

F(Π(t))
(Step A)
≥

k∑
j=1

∑
a∈π(t+1)

j

d(c(t)
j , a)

(Step B)
≥

k∑
j=1

∑
a∈π(t+1)

j

d(c(t+1)
j , a).

Therefore, F(Π(t)) ≥ F(Π(t+1)).
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Example 3.14. Determine LS-optimal 2-partition of the set A = {0, 2, 3}
by using the k-means algorithm with initial partition Π(0) = {{0, 2}, {3}}.

Iteration π1 π2 c1 c2 FLS(Π)
1 {0,2} {3} 1 3 2
2 {0,2} {3} 1 3 2

Table 3.3: Searching for the LS-optimal 2-partition of the set A = {0, 2, 3}

Table 3.3 shows that using the LS distance-like function, the k-means
algorithm sometimes cannot improve even the initial partition. However,
in the previous example, a better partition is Π? = {{0}, {2, 3}} because
FLS(Π?) = 0.5. This simple example shows that the k-means algorithm gives
a locally optimal partition. Choosing another initial partition we might have
got the k-GOPart. Give it a try!

Besides the aforementioned shortcoming of the k-means algorithm to
heavily depend on the initial partition and to produce only some locally
optimal partition, as in Example 3.14, one should also point out yet another
limitation: during the iterative process it might happen that some clusters
become empty sets, i.e. it might happen that the number of clusters decreases
(see Example ??, page ??).

3.2 Clustering data with one feature

Let A be a set of m ≥ 2 elements with one feature. As we have remarked on
page 30, such a set can be considered as a subset of R, i.e. A = {a1, . . . , am} ⊂
R. The set A should be grouped into 1 ≤ k ≤ m clusters π1, . . . , πk
conforming with Definition 3.1. For example, days of a year can be clustered
into three clusters according to daily average temperatures expressed in °C:
cluster of cold days, cluster of days with mild temperature, and cluster of
warm days. According to the named feature, we are going to represent every
element a ∈ A with a real number which we will also denote by a. Therefore,
from now on, we are going to assume that A = {a1, . . . , am} is a multiset of
data, i.e. some elements may appear multiple times in A. So, in our example,
the multiset A would have 365 elements, all being, say, 8, 15, or 22.
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Given a distance-like function d : R×R→ R+, one can associate to every
cluster πj ∈ Π its center cj as follows:

cj ∈ argmin
x∈R

∑
a∈πj

d(x, a), j = 1, . . . , k. (3.6)

Furthermore, if we define an objective function F : P(A; k)→ R+ on the
set P(A; k) of all partitions of A, by

F(Π) =
k∑
j=1

∑
a∈πj

d(cj , a), (3.7)

then the search for an optimal k-GOPart is done by solving the following
optimization problem:

argmin
Π∈P(A;k)

F(Π). (3.8)

Note that the k-GOPart will have the property that the sum of dissipations
(the sum of deviations) of cluster elements to its center, is minimal. In this
way we attempt to obtain as good the inner compactness and separation
between clusters, as possible.
Remark 3.15. Number of all k-partitions of a set A with m elements can
be rather huge (see Table 3.1). But in the case of data with one feature
(A ⊂ R) it is obvious that the optimal partition can be expected among
partitions where clusters follow one another. This means that all elements of
cluster π2 are on the right hand side of cluster π1, all elements of cluster π3
are on the right hand side of cluster π2, etc. (see [26, p. 161]). The number of
such partitions is considerably smaller as shown by the following proposition
(see also Table 3.4).

(
m−1
k−1

)
k = 2 k = 3 k = 4 k = 5 k = 6 k = 8 k = 10

m = 10 9 36 84 126 126 36 1
m = 30 29 406 3 654 23 751 118 755 1 560 780 10 015 005
m = 50 49 1 176 18 424 211 876 1 906 884 85 900 584 2 054 455 634

Table 3.4: Number of k-partitions of a set A ⊂ R whose clusters follow one another

Proposition 3.16. Let A = {ai ∈ R : i = 1, . . . ,m}. The number of all
k-partitions of the set A whose clusters π1, . . . , πk follow one another equals(

m−1
k−1

)
. (3.9)
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Proof. Without loss of generality, assume A = {1, . . . ,m}.
π1 π2 πk−1 πk

1 r1 r2 rk−2 rk−1 m

Obviously the smallest element of cluster π1 has to be 1 ∈ A, and
the largest element of cluster πk has to be m ∈ A. Denote the largest
elements of clusters π1, . . . , πk−1 by r1, . . . , rk−1. These numbers satisfy
1≤ r1 < r2 < · · ·< rk−1 <m. Therefore the question about number of all
k-partitions of the set A whose clusters follow one another, boils down to
the question of number of elements of the set

S = {(r1, . . . , rk−1) ∈ Ak−1 : 1 ≤ r1 < r2 < · · · < rk−1 < m},

i.e. on the number of all subsets of the set {1, . . . ,m−1} with k−1 elements.
And this is the number of (k−1)-combinations of a set withm−1 elements.

3.2.1 Application of LS distance-like function

Let Π = {π1, . . . , πk} be a k-partition of the setA ⊂ R, and dLS : R×R→ R+,
defined by dLS(x, y) = (x− y)2, be the LS-distace-like function. The centers
of clusters π1, . . . , πk are called centroids and are determined as follows:

cj = argmin
x∈R

∑
a∈πj

(x− a)2 = 1
|πj |

∑
a∈πj

a, j = 1, . . . , k, (3.10)

and the objective function (3.7) is defined by

FLS(Π) =
k∑
j=1

∑
a∈πj

(cj − a)2. (3.11)

Example 3.17. Given the set A = {2, 4, 8, 10, 16}, find all its 3-partitions
satisfying Definition 3.1 and whose clusters follow one another. Determine
also the corresponding centroids and the objective function FLS .

According to Stirling formula (3.2), the number of all 3-partitions of the
set A is 25. But the number of 3-partitions of the same set with clusters
following one another is only

(5−1
3−1
)

= 4!
2!·2! = 6, see Table 3.5. From this table

we see that the LS-optimal 3-partition is Π? = {{2, 4}, {8, 10}, {16}}, the
one in the fifth row, where the objective function FLS attains its (global)
minimum FLS(Π?) = 4, and Π? is therefore the LS 3-GOPart.
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π1 π2 π3 c1 c2 c3 FLS(Π) G(Π)
{2} {4} {8,10,16} 2 4 11.33 0 + 0 + 34.67 = 34.67 36 + 16 + 33.33 = 85.33
{2} {4,8} {10,16} 2 6 13 0 + 8 + 18 = 26 36 + 8 + 50 = 94
{2} {4,8,10} {16} 2 7.33 16 0 + 18.67 + 0 = 18.67 36 + 1.33 + 64 = 101.33
{2,4} {8} {10,16} 3 8 13 2 + 0 + 18 = 20 50 + 0 + 50 = 100

{2,4} {8,10} {16} 3 9 16 2 + 2 + 0 = 4 50 + 2 + 64 = 116

{2,4,8} {10} {16} 4.67 10 16 18.67 + 0 + 0 = 18.67 33.33 + 4 + 64 = 101.33

Table 3.5: All 3-partitions of A = {2, 4, 8, 10, 16} whose clusters follow one another

Exercise 3.18. What is the number of all 3-partitions, and the num-
ber of 3-partitions with clusters following one another, of the set A =
{1, 4, 5, 8, 10, 12, 15}? Write down all 3-partitions with clusters following one
another, and find the LS-optimal one.

Solution: The number of all partitions is 301, and the number of partitions
with clusters following one another is 15. The LS-optimal 3-partition is Π? =
{{1, 4, 5}, {8, 10}, {12, 15}}, and F(Π?) = 91

6 ≈ 15.1667.

3.2.2 The dual problem

The following lemma shows that applying the LS distance-like function, the
dissipation of the set A about its center c equals the sum of dissipations of
clusters πj , j = 1, . . . , k about their centers cj , j = 1, . . . , k, and the weighted
sum of squared distances between c and cj , where the weights are determined
by the size of sets πj .

Lemma 3.19. Let A = {a1, . . . , am} be a data set, let Π = {π1, . . . , πk} be
its k-partition with clusters π1, . . . , πk, and let

c = 1
m

m∑
i=1

ai, cj = 1
|πj |

∑
a∈πj

a, j = 1, . . . , k. (3.12)

Then

m∑
i=1

(c− ai)2 = FLS(Π) + G(Π), (3.13)
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where

FLS(Π) =
k∑
j=1

∑
a∈πj

(cj − a)2, (3.14)

G(Π) =
k∑
j=1
|πj | (cj − c)2. (3.15)

Proof. Notice that for cj we have ∑
ai∈πj

(cj − ai) = 0. Using this, for every

x ∈ R we have∑
ai∈πj

(x− ai)2 =
∑
ai∈πj

(
(x− cj) + (cj − ai)

)2
=
∑
ai∈πj

(x− cj)2 + 2
∑
ai∈πj

(x− cj)(cj − ai) +
∑
ai∈πj

(cj − ai)2

= |πj | (x− cj)2 +
∑
ai∈πj

(cj − ai)2,

i.e.∑
ai∈πj

(x− ai)2 =
∑
ai∈πj

(cj − ai)2 + |πj | (cj − x)2, j = 1, . . . , k. (3.16)

If we put c = 1
m

m∑
i=1

ai in (3.16) instead of x and sum all equations, we

obtain (3.13).

The objective function FLS occurred naturally in formula (3.13), and
this formula shows that the total dissipation of elements of the set A about
its centroid c, can be described as the sum of two objective functions FLS
and G.

In particular, the LS-optimal 3-partition of the set A in Example 3.17
is Π? = {{2, 4}, {8, 10}, {16}}, for which F(Π?) = 4 (see Table 3.5). The
obvious question is: what is G(Π?) in this example?

To answer this question, let us expand Table 3.5 by adding values of
the function G for each partition (blue part of the table). Notice that
the sum FLS(Π) + G(Π) is constant and equals

m∑
i=1

(c − ai)2 = 120, which

is in accordance with (3.13), and the maximal value of the function G is
attained precisely at the LS-optimal 3-partition Π? for which the objective
function FLS attains its minimal value.
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Is this accidental?
To answer this question, let us first try to solve the following example

which considers a similar problem. For this we need some foreknowledge
from calculus(see e.g. [11, 13]).
Example 3.20. Let ϕ,ψ ∈ C2(R) be two functions such that ϕ(x)+ψ(x) = κ
for some constant κ ∈ R. The function ϕ attains its local minimum at
x0 ∈ R if and only if the function ψ attains at x0 its local maximum, and
ϕ(x0) = κ− ψ(x0).

If ϕ′(x0) = 0, then ψ′(x0) = 0, and vice versa. Also, if ϕ′′(x0) > 0, then
ψ′′(x0) < 0, and vice versa. Therefore we have

� x0 ∈ argmin
x∈R

ϕ(x) if and only if x0 ∈ argmax
x∈R

ψ(x);

� min
x∈R

ϕ(x) = κ−max
x∈R

ψ(x), i.e. ϕ(x0) = κ− ψ(x0).

Check whether the two functions ϕ(x) = x2 − 1 and ψ(x) = −x2 + 3
satisfy these properties. Draw their graphs in the same coordinate system.
Try to come up yourself with another example of a pair of functions ϕ,ψ
satisfying the said properties.

The next theorem follows directly from Lemma3.19 [35].
Theorem 3.21. Using the notation from Lemma3.19, there exists a parti-
tion Π? ∈ P(A; k) such that

(i) Π? ∈ argmin
Π∈P(A;k)

FLS(Π) = argmax
Π∈P(A;k)

G(Π),

(ii) min
Π∈P(A;k)

FLS(Π) = FLS(Π?) and max
Π∈P(A;k)

G(Π) = G(Π?),

where G(Π?) =
m∑
i=1

(c− ai)2 −FLS(Π?).

This means that in order to find the LS-optimal partition, instead of
minimizing the function FLS given by (3.11), one can maximize the dual
function G:

argmax
Π∈P(A;k)

G(Π), G(Π) =
k∑
j=1
|πj |(cj − c)2. (3.17)

The optimization problem (3.17) is called the dual problem with respect
to the optimization problem argmin

Π∈P(A;k)
FLS(Π).

One can say that the LS-optimal partition has the property that the
sum of dissipations of cluster elements (sum over all clusters of the sums of
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LS-distances from cluster elements to their centroids) minimal, and at the
same time the centroids of clusters are distant from each another as much
as possible. In this way one achieves the best inner compactness and best
separation between clusters.

3.2.3 Least absolute deviation principle

Let Π = {π1, . . . , πk} be a k-partition of the set A ⊂ R, and d1 : R×R→ R+,
defined by d1(x, y) = |x−y|, be the `1 metric function. The centers c1, . . . , ck
of clusters π1, . . . , πk are determined by

cj = med(πj) ∈ Med(πj) = argmin
x∈R

∑
a∈πj
|x− a|, j = 1, . . . , k, (3.18)

and the objective function (3.7) is defined by

F1(Π) =
k∑
j=1

∑
a∈πj
|cj − a|. (3.19)

If one uses (3.20) from Exercise 3.24 then, in order to calculate the objective
function (3.19), one doesn’t need to know the centers of clusters (3.18), which
speeds up the calculation process.
Example 3.22. Let A = {2, 4, 8, 10, 16} be the set as in Example 3.17. We
want to find all of its 3-partitions satisfying Definition 3.1 with clusters
following one another.

π1 π2 π3 c1 c2 c3 F1(Π)
{2} {4} {8,10,16} 2 4 10 0 + 0 + 8 = 8
{2} {4,8} {10,16} 2 6 13 0 + 4 + 6 = 10
{2} {4,8,10} {16} 2 8 16 0 + 6 + 0 = 6
{2,4} {8} {10,16} 3 8 13 2 + 0 + 6 = 8
{2,4} {8,10} {16} 3 9 16 2+2+0=4
{2,4,8} {10} {16} 4 10 16 6+0+0=6

Table 3.6: Partitions of the set A with clusters following one another

In addition, we want to determine the corresponding cluster centers and
the values of the objective function F1 using the `1 metric function, and then
find the globally `1-optimal 3-partition.
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The number of all 3-partitions with clusters following one another is(m−1
k−1

)
= 6 and, as shown in Table 3.6, the `1-optimal 3-partition is Π? =

{{2, 4}, {8, 10}, {16}} since the objective function F1 defined by (3.19) attains
at Π? its lowest value (global minimum). Hence, partition Π? is the `1-GOPart.
Exercise 3.23. Among all partitions of the set A = {1, 4, 5, 8, 10, 12, 15}
from Exercise 3.18, find the `1-optimal 3-partition.

Exercise 3.24. Let A = {a1, . . . , am} be a finite increasing sequence of real
numbers. Prove the following:

m∑
i=1
|ai −med(A)| =

dm2 e∑
i=1

(
am−i+1 − ai

)
, (3.20)

where dxe equals x if x in an integer, and dxe is the smallest integer larger
then x if x is not an integer.1 For example, d20e = 20, whereas d20.3e = 21.

3.2.4 Clustering weighted data

Let A = {a1, . . . , am} ⊂ R be a data set of real numbers and to each
datum ai ∈ A a corresponding weight wi > 0 is assigned. For example, in
[30, Example 3.8], where the authors analyses the problem of high water
levels of the river Drava at Donji Miholjac, data are days of the year and
weights are the measured water levels.

In the case of weighted data the objective function (3.7) becomes

F(Π) =
k∑
j=1

∑
ai∈πj

wi d(cj , ai), (3.21)

where
cj ∈ argmin

x∈R

∑
ai∈πj

wi d(x, ai), j = 1, . . . , k. (3.22)

In particular, when applying the LS distance-like function, the centers cj of
clusters πj are weighted arithmetic means of data in πj

cj = 1
κj

∑
ai∈πj

wi a
i, κj =

∑
ai∈πj

wi, (3.23)

and when applying the `1 metric function, the centers cj of clusters πj are
weighted medians of data in πj [25, 39]

cj = med
ai∈πj

(wi, ai) ∈ Med(w,A). (3.24)

1In Mathematica computation system, dxe is obtained by Ceiling[x], and bxc by
Floor[x].
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Example 3.25. Let us again consider the set A = {1, 4, 5, 8, 10, 12, 15}
from Exercise 3.18. Assign to each but the last datum the weight 1, and
to the last datum the weight 3. Now the LS-optimal 3-partition becomes
Π? = {{1, 4, 5}, {8, 10, 12}, {15}} with centroids 10

3 , 10, and 15, and the
objective function value F(Π?) = 50

3 = 16.667.
In order to determine the centers of clusters when applying the `1 metric

function, one has to know how to calculate weighted median of the data. As
mentioned in Section 2.1.3, this might turn out to be not a simple task. If
the weights are integers, the problem can be reduced to finding the usual
median of data (see Example 2.16). If the weights are not integers, then by
multiplying with some appropriate number and taking approximations, one
can reduce the weights to integers.
Exercise 3.26. Find the `1-optimal 3-partition of the setA from the previous
example with all weights being equal 1, and in the case when the weights
are assigned as in the previous example.

Exercise 3.27. Write down formulas for the centroid of the setA, and for the
objective functions F and G for the data set A with weights w1, . . . , wm > 0.

Solution: G(Π) =
k∑
j=1

(∑
πj
ws
)
(cj − c)2.

3.3 Clustering data with two or several features

Let A be a set of m ≥ 2 elements with n ≥ 2 features. As already said, such a
set can be regarded as a subset of Rn, i.e. A = {ai = (ai1, . . . , ain) ∈ Rn : i =
1, . . . ,m}. The set A should be grouped in accordance with Definition 3.1,
into 1 ≤ k ≤ m disjoint nonempty clusters. For example, elements of the set
A ⊂ R2 from Example 3.5 have two features— the abscissa and the ordinate,
and the elements can be grouped into 2, 3, 4, 5, 6, 7, 8 or more clusters (see
Figure ??).

Let Π ∈ P(A; k) be a partition of the set A. Given a distance-like function
d : Rn × Rn → R+, to each cluster πj ∈ Π one can assign its center cj in the
following way:

cj ∈ argmin
x∈Rn

∑
a∈πj

d(x, a), j = 1, . . . , k. (3.25)

Analogously to the case of data with one feature, if we define the objective
function F : P(A; k)→ R+ on the sets of all partitions P(A; k) of the set A
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consisting of k clusters, by

F(Π) =
k∑
j=1

∑
a∈πj

d(cj , a), (3.26)

then we search for the optimal k-partition by solving the following GOP:

argmin
Π∈P(A;k)

F(Π). (3.27)

Note that the optimal k-partition has the property that the dissipation
(the sum of d-distances of the cluster elements to their centers) is minimal.
In this way we attempt to achieve as good the inner compactness of clusters
as possible.

3.3.1 Least squares principle

Let Π = {π1, . . . , πk} be a partition of the set A = {ai = (ai1, . . . , ain) ∈ Rn :
i = 1, . . . ,m}. The centers c1, . . . , ck of clusters π1, . . . , πk for the LS distance-
like function dLS : Rn×Rn → R+, defined as dLS(a, b) = ‖a− b‖2, are called
centroids and are obtained as follows:

cj = argmin
x∈Rn

∑
a∈πj
‖x− a‖2 = 1

|πj |
∑
a∈πj

a

=
(

1
|πj |

∑
a∈πj

a1, . . . ,
1
|πj |

∑
a∈πj

an
)
, j = 1, . . . , k, (3.28)

where ∑
a∈πj

a`, ` = 1, . . . , n, denotes the sum of `-th components of all elements

in cluster πj . In this case the objective function (3.26) is defined by

FLS(Π) =
k∑
j=1

∑
a∈πj
‖cj − a‖2. (3.29)

Example 3.28. Consider the set A = {a1 = (1, 1), a2 = (3, 1), a3 =
(3, 2), a4 = (2, 2)} in the plane. The number of its 2-partitions is P(A; 2) =
24−1 − 1 = 7 and they are all listed in Table 3.7. Let us find the optimal
2-partition.

The elements of A have two features— the abscissa and the ordinate, so
the set A can be simply recorded as A = {ai = (xi, yi) ∈ R2 : i = 1, . . . , 4},
and depicted in the plane (see Figure 3.4).
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1 2 3 4

1

2

3

Figure 3.4: The set A ⊂ R2

According to (3.2) the set A has 7 different 2-partitions. Let Π = {π1, π2}
be one of them. Its centroid is defined by

c1 = 1
|π1|

∑
a∈π1

a, c2 = 1
|π2|

∑
a∈π2

a,

and the corresponding LS-objective function is

FLS(Π) =
∑
a∈π1

‖c1 − a‖2 +
∑
a∈π2

‖c2 − a‖2.

So the value of the objective function FLS is obtained by adding the sum
of LS-distances of elements of cluster π1 to its centroid c1, and the sum of
LS-distances of elements of cluster π2 to its centroid c2.

π1 π2 c1 c2 FLS(Π) G(Π)
{(1, 1)} {(2, 2), (3, 1, (3, 2)} (1, 1) (2.67, 1.67) 0+1.33=1.33 1.82+0.60=2.42
{(3, 1)} {(1, 1), (2, 2), (3, 2)} (3, 1) (2., 1.67) 0+2.67=2.67 0.81+0.27=1.08
{(3, 2)} {(1, 1), (2, 2), (3, 1)} (3, 2) (2., 1.3) 0+2.67=2.67 0.81+0.27=1.08
{(2, 2)} {(1, 1), (3, 1), (3, 2)} (2, 2) (2.3, 1.3) 0+3.33=3.33 0.31+0.10=0.42

{(1, 1), (3, 1)} {(2, 2), (3, 2)} (2, 1) (2.5, 2.) 2+0.5=2.5 0.625+0.625=1.25
{(1, 1), (3, 2)} {(2, 2), (3, 1)} (2, 1.5) (2.5, 1.5) 2.5+1.=3.5 0.125+0.125=0.25
{(1, 1), (2, 2)} {(3, 1), (3, 2)} (1.5, 1.5) (3., 1.5) 1+0.5=1.5 1.125+1.125=2.25

Table 3.7: Partitions, centers and values of objective functions FLS and G from
Example 3.28

Table 3.7 lists all partitions of the set A, the centroids of respective
clusters, and values of objective function FLS . As one can see, the LS-
optimal partition is Π? =

{
{(1, 1)}, {(2, 2), (3, 1), (3, 2)}

}
, since FLS attains

the global minimum at it (see also Figure 3.4).

3.3.2 Dual problem

The next lemma shows that in the case of LS distance-like function, dissipation
of the set A about its center c equals the sum of dissipations of all clusters
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πj , j = 1, . . . , k, about their centers cj , j = 1, . . . , k, and the weighted sum
of squared distances between the center c and cluster centers cj , where the
weights are determined by sizes of sets πj .
Lemma 3.29. Let A = {ai ∈ Rn : i = 1, . . . ,m} be a data set, Π =
{π1, . . . , πk} some k-partition with clusters π1, . . . , πk, and let

c = 1
m

m∑
i=1

ai, cj = 1
|πj |

∑
ai∈πj

ai, j = 1, . . . , k (3.30)

be the centroid of the set A and centroids of clusters π1, . . . , πk, respectively.
Then

m∑
i=1
‖c− ai‖2 = FLS(Π) + G(Π), (3.31)

where

FLS(Π) =
k∑
j=1

∑
ai∈πj

‖cj − ai‖2, (3.32)

G(Π) =
k∑
j=1
|πj |‖cj − c‖2. (3.33)

Proof. Note first, that cj satisfies the arithmetic mean property∑
ai∈πj

(cj − ai) = 0. (3.34)

For an arbitrary x ∈ Rn we have∑
ai∈πj

‖x− ai‖2 =
∑
ai∈πj

‖(x− cj) + (cj − ai)‖2

=
∑
ai∈πj

‖x− cj‖2 + 2
∑
ai∈πj

〈x− cj , cj − ai〉+
∑
ai∈πj

‖cj − ai‖2.

Since ∑
ai∈πj

〈x − cj , cj − ai〉 = 〈x − cj ,
∑

ai∈πj
(cj − ai)〉 (3.34)= 0, from the

previous equality we obtain∑
ai∈πj

‖x− ai‖2 =
∑
ai∈πj

‖cj − ai‖2 + |πj | ‖cj − x‖2, j = 1, . . . , k. (3.35)

Substituting c = 1
m

m∑
i=1

ai for x into (3.35) and adding all equations, we

obtain (3.31).
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The objective function FLS occurs in (3.31) naturally, and this formula
shows that the total dissipation of elements of A about its centroid c can be
expressed as the sum of two objective functions FLS and G.

As in Section 3.2.2, using Lemma3.29, one can show that the following
theorem holds true [3, 35].
Theorem 3.30. Using the notation as in Lemma 3.29, there exists a partition
Π? ∈ P(A; k) such that

(i) Π? ∈ argmin
Π∈P(A;k)

FLS(Π) = argmax
Π∈P(A;k)

G(Π),

(ii) min
Π∈P(A;k)

FLS(Π) = FLS(Π?) and max
Π∈P(A;k)

G(Π) = G(Π?),

where G(Π?) =
m∑
i=1
‖c− ai‖2 −FLS(Π?).

This means that in order to find the LS-optimal partition, instead of
minimizing the function FLS defined by (3.32), one can solve the problem of
maximizing the function G

argmax
Π∈P(A;k)

G(Π), G(Π) =
k∑
j=1
|πj |‖cj − c‖2. (3.36)

The optimization problem (3.36) is called the dual problem for the
optimization problem argmin

Π∈P(A;k)
FLS(Π).

One can say that the LS-optimal partition has the property that the
sum of dissipation of cluster elements (the sum over all clusters of sums of
LS-distances between cluster elements and respective centroids) is minimal,
and at the same time the clusters a maximally separated. In this way one
achieves the best inner compactness and separation between clusters.
Example 3.31. In Example 3.28 one can consider also the corresponding
dual problem.

Particularly, in this case the formula (3.31) becomes

m∑
i=1
‖c−ai‖2 =

( ∑
a∈π1

‖c1−a‖2+
∑
a∈π2

‖c2−a‖2
)

+
(
m1 ‖c1−c‖2+m2 ‖c2−c‖2

)
,

and the dual optimization problem (3.36) becomes

argmax
Π∈P(A;k)

G(Π), G(Π) = m1 ‖c1 − c‖2 +m2 ‖c2 − c‖2.
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For each 2-partition in Table 3.7, page 46, the values of the dual objective
function G are shown in blue. As can be seen, G attains its maximal value
at the partition Π? =

{
{(1, 1)}, {(2, 2), (3, 1), (3, 2)}

}
, the same one at

which FLS , given by (3.29), attained the minimal value.
Example 3.32. The set A = {ai = (xi, yi) : i = 1, . . . , 8} ⊂ R2 is given by
the following table:

i 1 2 3 4 5 6 7 8
xi 1 4 4 4 7 8 8 10
yi 3 5 7 9 1 6 10 8

Applying the LS distance-like function for 2-partitions

Π1 =
{
{a1, a2, a5}, {a3, a4, a6, a7, a8}

}
,

Π2 =
{
{a1, a2, a3, a5}, {a4, a6, a7, a8}

}
,

depicted in 3.5 with clusters colored blue and red respectively, determine the
centroids and corresponding values of objective functions FLS and G, and
based on this, identify the partition being closer to the optimal one.

✶
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8
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(a) Partition Π1

✶

✶

2 4 6 8 10

2

4

6

8

10

(b) Partition Π2

Figure 3.5: Two partitions of the set A from Example 3.32

As for the partition Π1 we obtain c1 = (4, 3), c2 = (6.8, 8), FLS = 26 +
38.8 = 64.8 and G = 61.575, and for partition Π2, c1 = (4, 4), c2 = (7.5, 8.25),
FLS = 38 + 27.75 = 65.75 and G = 60.625. Therefore the 2-partition Π1
is closer to the LS-optimal one. Check, applying the Mathematica-module
WKMeans[], whether this is the globally LS-optimal 2-partition. Note (for-
mula (3.2)) that in this case, in total there are 27 − 1 = 127 different
2-partitions.
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Exercise 3.33. Let the set A = {ai = (xi, yi) : i = 1, . . . ,m}, depicted in
Figure 3.6, be given by the following table:

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 1 2 4 4 5 6 7 8 8 8 9 10
yi 3 1 5 9 7 1 5 2 6 10 4 8

Determine at which of the two 3-partitions shown in Figure 3.6 does the
LS-objective function FLS , given by (3.29), attain the smaller value.
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(a) Partition Π1
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✶

✶
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(b) Partition Π2

π1

π2

π3

Figure 3.6: Comparison of the two partitions in Exercise 3.33

Solution:

Π1 =
{
{a1, a2, a3}, {a4, a5, a9, a10, a12}, {a6, a7, a8, a11}

}
(Figure 3.6a)

Π2 =
{
{a1, a2, a3}, {a4, a5, a7, a9, a10, a12}, {a6, a8, a11}

}
(Figure 3.6b)

Π1 : c1 = (2.33, 3), c2 = (7, 8), c3 = (7.5, 3);
FLS = 12.67 + 34 + 15 = 61.67; G = 127.25,

Π2 : c1 = (2.33, 3), c2 = (7, 7.5), c3 = (7.67, 2.33);
FLS = 12.67+41.5+9.33=63.5; G = 125.42.

Hence, smaller value of LS-objective function FLS (and larger value of
the dual function G) is attained at the 3-partition Π1, and therefore it is
closer to the LS-optimal one. Try, using the Mathematica-module WKMeans[]
with various initial partitions, to find a better 3-partition.

3.3.3 Least absolute deviation principle

Let A ⊂ Rn be a set, Π = {π1, . . . , πk} some k-partition, and d1 : Rn×Rn →
R+, given by d1(x, y) = ‖x − y‖1, the `1 metric function. The centers
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c1, . . . , ck of clusters π1, . . . , πk are determined by

cj = med(πj) =
(

med
a∈πj

a1, . . . ,med
a∈πj

an
)
∈ Med(πj)

=
(

Med
a∈πj

a1, . . . ,Med
a∈πj

an
)

= argmin
x∈Rn

∑
a∈πj
‖x− a‖1 (3.37)

where med
a∈πj

a` denote medians of the `-th components of all clusters πj ,
` = 1, . . . , n. The `1 metric objective function is, in this case, defined as

F1(Π) =
k∑
j=1

∑
a∈πj
‖cj − a‖1 . (3.38)

Exercise 3.34. Show that using the `1 metric function, the globally optimal
2-partition from Example 3.28 is

{
{(1, 1), (3, 2)}, {(2, 2), (3, 1)}

}
with cluster

centers being c1 = (2, 1.5) and c2 = (2.5, 1.5), and the value of objective
function F1 being 5.

Exercise 3.35. Use the least absolute deviation principle to the partitions
in Exercise 3.33.
Example 3.36. The set A = {ai = (xi, yi) ∈ R2 : i = 1, . . . , 10} is given by
the following table:

i 1 2 3 4 5 6 7 8 9 10
xi 2 3 4 4 5 6 6 8 8 9
yi 9 3 5 7 8 2 6 4 6 5

Determine at which of the following two 3-partitions does the `1-objective
function (3.38) attain the smaller value.

Π1 =
{
{a2, a3, a6}, {a1, a4, a5}, {a7, a8, a9, a10}

}
(Figure 3.7a)

Π2 =
{
{a2, a6}, {a1, a3, a4, a5, a7}, {a8, a9, a10}

}
. (Figure 3.7b)
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Figure 3.7: Comparison of the two partitions in Exercise 3.36

The following table lists `1-centers of clusters and values of the objective
function for both partitions. One can see that Π1 is the better partition
because the objection function attains smaller value at Π1 than at Π2.

c1 c2 c3 F1

Π1 (4, 3) (4, 8) (8, 5.5) (1+2+3)+(3+1+1)+(2.5+1.5+0.5+1.5) = 17
Π2 (4.5, 2.5) (4, 7) (8, 5) (2+2)+(4+2+0+2+3)+(1+1+1) = 18

Remark 3.37. In a similar way as in Section 3.2.4, where we have considered
the clustering problem for one-dimensional weighted data, we could proceed
in the case of two- and more-dimensional data.

3.4 Objective function F (c1, . . . , ck) =
m∑
i=1

min
1≤j≤k

d(cj, ai)

The objective function GOP (3.5) is not suitable for applying standard opti-
mization methods, since the independent variable is a partition. Therefore we
are going to reformulate GOP (3.5) in such a way that the objective function
becomes an ordinary function of several variables. For a survey of most
popular methods for finding partitions, see [38].

As was noted in the k-means algorithm 3.9 on page 34, we are going, for
the given set c1, . . . , ck ∈ Rn of centers, to split the set A into k clusters
π(c1), . . . , π(ck),2 such that the cluster πj contains those elements of the
set A which are closest to the center cj , so that for every ai ∈ A we have

ai ∈ πj(cj)⇔ d(cj , ai) ≤ d(cs, ai) for all s = 1, . . . , k. (3.39)
2Notice that the cluster π(cj) depends on neighboring clusters, and that the notation

π(cj) refers to the fact that the cluster π(cj) is associated with the center cj .
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In addition, one has to take care that each element of A belongs to a single
cluster. This principle, which we call minimal distance principle, results in a
partition Π = {π1, . . . , πk} with clusters π1, . . . , πk.

The problem of finding the optimal partition of the set A can therefore
be reduced to the following GOP (see also [35]):

argmin
c∈Rn×k

F (c), F (c) =
m∑
i=1

min
1≤j≤k

d(cj , ai), (3.40)

where c ∈ Rn×k is the concatenation of vectors c1, . . . , ck. The function F
is non-negative, symmetric, non-differentiable, non-convex, but Lipschitz-
continuous.

The following theorem shows that, when using the LS distance-like
function, the function F defined by (3.40) is Lipschitz-continuous. Similarly,
in [27] it is shown that this function is Lipschitz-continuous also in the case
of `1 metric function. This is an important property of the function F since
it allows one to use the global optimization algorithm DIRECT [8, 15, 22, 29].
Theorem 3.38. Let A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ ∆, where ∆ = {x ∈
Rn : αi ≤ xi ≤ βi}, for some α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Rn.
The function F : ∆k → R+ defined by

F (c) =
m∑
i=1

min
j=1,...,k

‖cj − ai‖2

is Lipschitz continuous.
In order to prove this theorem, we are going to approximate the function F

up to an ε > 0 by a differentiable (smooth) function Fε. To do this, we will
need some theoretical preparations.
Lemma 3.39. The function ψ : Rn → R, defined by ψ(x) = ln(ex1+· · ·+exn),
is a convex function.

Proof. One has to show that for all x, y ∈ Rn and λ ∈ [0, 1]

ψ
(
λx+ (1− λ) y

)
≤ λψ(x) + (1− λ)ψ(y), (3.41)

i.e.

ψ(αx+ βy) ≤ αψ(x) + β ψ(y), (3.42)

where α, β > 0 are such that α+ β = 1.
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Let the numbers p := 1
α and q := 1

β be such that 1
p + 1

q = 1. Since
α + β = 1, one of the numbers α, β has to be smaller than 1, hence one
of the numbers p, q has to be larger than 1. Let x = (x1, . . . , xn) and
y = (y1, . . . , yn) ∈ Rn. Applying the Hölder inequality3 (see [36]) to vectors

a = (eαx1 , . . . , eαxn) and b = (eβy1 , . . . , eβyn) ∈ Rn,

we obtain
|〈a, b〉| ≤

( n∑
i=1

(eαxi)p
)1/p( n∑

i=1
(eβyi)q

)1/q
,

i.e.
n∑
i=1

eαxi+βyi ≤
( n∑
i=1

exi
)α( n∑

i=1
eyi
)β
.

By taking the logarithm we obtain the required inequality (3.41).

Corollary 3.40. Let A ∈ Rn×n be a square matrix, b ∈ Rn a vector and
ψ : Rn → R defined by ψ(x) = ln(ex1 + · · ·+ exn). Then Φ(x) = ψ(Ax+ b)
is a convex function.

Proof. As in the proof of previous lemma, it suffices to show that for arbitrary
x, y ∈ Rn and α, β > 0, such that α+ β = 1, one has

Φ(αx+ β y) ≤ αΦ(x) + β Φ(y).

Since

Φ(αx+ β y) = ψ
(
A(αx+ β y) + b

)
= ψ(αAx+ β Ay + b)

= ψ
(
αAx+ α b+ β Ay + β b− (α+ β) b+ b

)
= ψ

(
α (Ax+ b) + β (Ay + b)

)
≤ αΦ(x) + β Φ(y),

the required inequality follows.

3For two vectors a, b ∈ Rn, and real numbers p and q such that 1
p

+ 1
q

= 1, p > 1, the

Hölder inequality states that
n∑
i=1
|aibi| ≤ ‖a‖p ‖b‖q, i.e.

n∑
i=1

|aibi| ≤
( n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

In particular, for p = q = 2 this becomes the well-known Cauchy-Schwarz-Buniakowsky
inequality.
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Exercise 3.41. Show that ψ : Rn+ → R defined by ψ(x) = ln( 1
x1

+ · · ·+ 1
xn

)
is a convex function.

Lemma 3.42. For every ε > 0, the function ψε : R→ R+ defined by

ψε(x) = ε ln
(
e−

x
ε + e

x
ε
)

= ε ln
(
2 ch x

ε

)
(3.43)

is a convex function of class C∞(R), and it satisfies

0 < ψε(x)− |x| ≤ ε ln 2 for all x ∈ R, (3.44)

ψ′ε(x) = th x
ε , ψ′′ε (x) = 1

ε ch2 x
ε

, argmin
x∈R

ψε(x) = 0, (3.45)

and the equality in (3.44) holds true if and only if x = 0.
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1.0

a) Functions x 7→ |x| and x 7→ ψε(x)

-2 -1 0 1 2

0.5

1.0

1.5

2.0

b) Function u 7→ 2 chu
e|u|

Figure 3.8: Smooth approximation of the function x 7→ |x|

Proof. Putting n = 2, x1 = −x
ε and x2 = x

ε , convexity of the function ψε
follows from Lemma3.39. In order to prove (3.44), notice that

ψε(x)− |x| = ε ln
(
2 ch x

ε

)
− ε |x|ε

= ε
(

ln
(
2 ch x

ε

)
− ln exp |x|ε

)
= ε ln

2 ch x
ε

exp |x|ε
.

Since for every u ∈ R (see Exercise 3.43) 1 < 2 chu
exp |u| ≤ 2, and since the

logarithmic function is monotonous, the previous equality implies

ε ln 1 < ψε(x)− |x| ≤ ε ln 2.

Formulas (3.45) follow directly

Exercise 3.43. Prove that for every u ∈ R the following holds true (see
Figure 3.8b)

1 < 2 ch u
e|u|

≤ 2.
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In view of (3.44), note that the function x 7→ |x|, x ∈ R, can be approxi-
mated by the function ψε (see Figure 3.8a).

In general, the non-differentiable function f : Rk → R, defined as f(z) =
max
j=1,...,k

zj , can be approximated by the differentiable function

ψε(z) = ψε(z1, . . . , zk) = ε ln
k∑
j=1

exp
( zj
ε

)
. (3.46)

Namely,

ψε(z)− f(z) = ε ln
k∑
j=1

exp
(zj
ε

)
− ε

max
i=1,...,k

zi

ε

= ε
(
ln

k∑
j=1

exp
(zj
ε

)
− ln exp max zi

ε

)

= ε ln
∑k
j=1 exp

( zj
ε

)
exp max zi

ε

= ε ln
k∑
j=1

exp zj−max zi
ε

≤ ε ln
k∑
j=1

e0 = ε ln k.

Moreover, since min
j=1,...,k

zj = − max
j=1,...,k

(−zj), we can use this result to

approximate the function F (c1, . . . , ck) =
m∑
i=1

min
1≤j≤k

d(cj , ai) by

Fε(c1, . . . , ck) = −ε
m∑
i=1

ln
k∑
j=1

exp(−d(cj ,ai)
ε ). (3.47)

We are now ready to prove Theorem3.38.

Proof of Theorem3.38. In accordance with (3.47), define the auxiliary func-
tion

Fε(u) = −ε
m∑
i=1

ln
k∑
j=1

exp(−‖cj−a
i‖2

ε ) .

Then, according to [17], the following holds true:

0 ≤ F (u)− Fε(u) ≤ εm ln k

Therefore

|F (u)− F (v)| = |(F (u)− Fε(u)) + (Fε(v)− F (v)) + (Fε(u)− Fε(v))|
≤ |F (u)− Fε(u)|+ |Fε(v)− F (v)|+ |Fε(u)− Fε(v)|
≤ 2 εm ln k + |Fε(u)− Fε(v)|. (3.48)
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Since

∂Fε(x)
∂xp

= 2
m∑
i=1

(xp−ai) exp
(
−
‖xp−ai‖2

ε

)
∑k

j=1 exp
(
−
‖xj−ai‖2

ε

) ,
we obtain

∥∥∥∂Fε(x)
∂xp

∥∥∥ ≤ 2
m∑
i=1
‖xp − ai‖ ≤ 2

m∑
i=1

max
j=1,...,m

‖ai − aj‖

≤ 2m max
i,j∈{1,...,m}

‖ai − aj‖, p = 1, . . . , k,

i.e. the gradient ∇Fε(x) is continuous and bounded on ∆k. Using the
Lagrange intermediate value theorem for the function Fε on ∆k, we conclude
that there exists an L > 0 (not depending on ε) such that

|Fε(u)− Fε(v)| ≤ L‖u− v‖, u, v ∈ ∆k.

Finally, for ε→ 0+, (3.48) implies that |F (u)− F (v)| ≤ L ‖u− v‖.

The following lemma and theorem show the connection between the
objective function F defined by (3.5) and the objective function F defined
by (3.40).

Lemma 3.44. Let A = {ai ∈ Rn : i = 1, . . . ,m} be a finite set in Rn,
z1, . . . , zk ∈ Rn a set of mutually distinct points, and d : Rn × Rn → R+
a distance-like function. In addition, let Π = {π1(z1), . . . , πk(zk)} be a
partition whose clusters were obtained by minimal distance principle and let
cj ∈ argmin

x∈Rn

∑
a∈πj

d(x, a), j = 1, . . . , k, be their centers. Then

F (z1, . . . , zk)
(?)
≥ F(Π)

(??)
≥ F (c1, . . . , ck), (3.49)

while inequalities (?) and (??) turn to equalities if and only if zj = cj for
every j = 1, . . . , k.
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Proof. In order to prove inequality (?) we split
m∑
i=1

into k sums
k∑
j=1

∑
a∈πj

.

F (z1, . . . , zk) =
m∑
i=1

min{d(z1, a
i), . . . , d(zk, ai)}

=
k∑
j=1

∑
ai∈πj

min{d(z1, a
i), . . . , d(zk, ai)}

=
k∑
j=1

∑
ai∈πj

d(zj , ai)

(?)
≥

k∑
j=1

∑
ai∈πj

d(cj , ai) = F({π1, . . . , πk}).

To prove (??), first notice that for every a ∈ πj on has

d(cj , a) ≥ min{d(c1, a), . . . , d(ck, a)}.

Therefore,

F({π1, . . . , πk}) =
k∑
j=1

∑
ai∈πj

d(cj , ai)

≥
k∑
j=1

∑
ai∈πj

min{d(c1, a
i), . . . , d(ck, ai)}

=
m∑
i=1

min{d(c1, a
i), . . . , d(ck, ai)} = F (c1, . . . , ck),

showing (??).

Theorem 3.45. Let A = {ai ∈ Rn : i = 1, . . . ,m} ⊂ Rn. Then:

(i) c? = (c?1, . . . , c?k)T ∈ argmin
c1,...,ck∈Rn

F (c1, . . . , ck) if and only if

Π? = {π?1(c?1), . . . , π?k(c?k)} ∈ argmin
Π∈P(A;k)

F(Π) ,

(ii) min
c1,...,ck∈Rn

F (c1, . . . , ck) = min
Π∈P(A;k)

F(Π) .

Proof. (a) Let c? = (c?1, . . . , c?k)T ∈ argmin
c1,...,ck∈Rn

F (c1, . . . , ck). Denote by π?j

the corresponding clusters obtained by minimal distance principle, and let
Π? = {π?1, . . . , π?k}. According to Lemma3.44

F (c?) = F(Π?). (3.50)
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We claim that
Π? ∈ argmin

Π∈P(A;k)
F(Π). (3.51)

Namely, if there existed a partition N ? = {ν?1 , . . . , ν?k} ∈ P(A; k) with cluster
centers ζ? = (ζ?1 , . . . , ζ?k) such that F(N ?) < F(Π?), we would have

F (ζ?) Lemma 3.44= F(N ?) < F(Π?) Lemma 3.44= F (c?),

which is not possible since c? ∈ argmin
c∈Rn×k

F (c).

(b) Let Π? = {π?1, . . . , π?k} ∈ argmin
Π∈P(A;k)

F(Π). Denote by c? = (c?1, . . . , c?k)

the centers of clusters π?1, . . . , π?k. According to Lemma3.44

F (c?) = F(Π?). (3.52)

We claim that
c? ∈ argmin

c∈Rn×k
F (c). (3.53)

Namely, if there existed a ζ? = (ζ?1 , . . . , ζ?k) such that F (ζ?) < F (c?), then
the partition N ?(ζ?) would satisfy

F(Π?) Lemma 3.44= F (c?) > F (ζ?) Lemma 3.44= F(N ?),

which is not possible since Π? ∈ argmin
Π∈P(A;k)

F(Π).

Example 3.46. Let A = {1, 3, 4, 8} be a set with m = 4 data. Table 3.8
lists some values of objective functions FLS and FLS supporting claims of
Lemma3.44 and Theorem3.45. For the optimal partition the inequality (?)
becomes equality, while z1, z2 coincide with cluster centers (the fourth row).

z1 z2 FLS(z1, z2) π1 π2 c1 c2 FLS FLS(c1, c2)

1. 1 4 17 {1} {3,4,8} 1 5 14 14
2. 1 5 14 {1,3} {4,8} 2 6 10 10
3. 3 7 6 {1,3,4} {8} 8

3 8 14
3

14
3

4. 8
3 8 14

3 {1,3,4} {8} 8
3 8 14

3
14
3

Table 3.8: Comparing values of objective functions FLS and FLS for A = {1, 3, 4, 8}
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Example 3.47. Let A = {16, 11, 2, 9, 2, 8, 15, 19, 8, 17} be a set with m = 10
data. Table 3.9 lists some values of objective functions F1 and F1 supporting
claims of Lemma3.44 and Theorem3.45. In particular, pay attention to the
third row showing sharp inequality (??).

z1 z2 F1(z1, z2) π1 π2 (c1, c2) F1 F1(c1, c2)

1. 2 6 55 {2,2} {8,8,9,11,15,16,17,19} {2,13} 31 31
2. 2 13 31 {2,2} {8,8,9,11,15,16,17,19} {2,13} 31 31
3. 3 15 29 {2,2,8,8,9} {11,15,16,17,19} {8,16} 23 21
4. 6 16 25 {2,2,8,8,9,11} {15,16,17,19} {8, 33

2 } 21 21
5. 8 16 21 {2,2,8,8,9,11} {15,16,17,19} {8, 33

2 } 21 21

Table 3.9: Comparing values of objective functions F1 and F1

Exercise 3.48. Carry out a similar verification as in Example 3.46 using the
`1 metric function, and also a similar verification as in Example 3.47 using
the LS distance-like function.

Using Theorem3.45 we are now ready to prove Theorem3.6, stating that
increasing the number of clusters does not increase the value of the objective
function F .

Proof of Theorem3.6. Let ĉ = (ĉ1, . . . , ĉk−1) be the centers of the optimal
(k − 1)-partition Π(k−1), and c? = (c?1, . . . , c?k) be the centers of the optimal
k-partition Π(k). Take a ζ ∈ Rn \ {ĉ1, . . . , ĉk−1} and let

δik−1 := min
1≤s≤k−1

d(ĉs, ai), i = 1, . . . ,m.

Then

F(Π(k−1)) Thm 3.45= F (ĉ) =
m∑
i=1

min{d(ĉ1, a
i), . . . , d(ĉk−1, a

i)} =
m∑
i=1

δik−1

≥
m∑
i=1

min{δik−1, d(ζ, ai)} [Π(k) being optimal k-partition]

≥
m∑
i=1

min{d(c?1, ai), . . . , d(c?k, ai)}

= F (c?) Thm 3.45= F(Π(k)),

asserting that increasing the number of clusters in the optimal partition does
not increase the value of the objective function.



3.4. Objective function F (c1, . . . , ck) =
m∑
i=1

min
1≤j≤k

d(cj , ai) 61

Remark 3.49. The above proof of Theorem3.6 implicitly shows that F is a
monotonous function.

Lemma3.44 and Theorem3.45 motivates the following definition.
Definition 3.50. Let A = {ai ∈ Rn : i = 1, . . . ,m} be a finite set in
Rn, d : Rn × Rn → R+ a distance-like function and Π̂ = {π̂1, . . . , π̂k} a
partition whose cluster centers ĉ1, . . . , ĉk are such that the function F attains
a local minimum at (ĉ1, . . . , ĉk). The partition Π̂ is called a locally optimal
k-partition (LOPart) of the set A provided that

F(Π̂) = F (ĉ1, . . . , ĉk). (3.54)
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