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Introduction
Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 5/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Model Reduction for Dynamical Systems

Original System

Σ :

{
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Σ̂ :

{
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inputs u(t) ∈ Rm,
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Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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Model Reduction for Dynamical Systems
Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.
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Application Areas
Structural Mechanics / Finite Element Modeling since ∼1960ies

 

Resolving complex 3D geometries ⇒ millions of degrees of freedom.

Analysis of elastic deformations requires many simulation runs for
varying external forces, in particular if the model is used in an
(elastic) multi-body simulation ((E)MBS).

Standard MOR techniques in structural mechanics: modal truncation,
combined with Guyan reduction (static condensation)  Craig-Bampton
method.
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Application Areas
(Optimal) Control since ∼1980ies

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n.

Practical controllers require small N (N ∼ 10, say) due to
– real-time constraints,

– increasing fragility for larger N.

=⇒ reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75) states that the number of on-chip transistors
doubles each 24 months.

 

Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore’sLaw_-_2011.svg
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Intel 4004 (1971) Intel Core 2 Extreme (quad-core) (2007)

1 layer, 10µ technology 9 layers, 45nm technology
2,300 transistors > 8, 200, 000 transistors
64 kHz clock speed > 3 GHz clock speed.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Here: mostly MOR for linear systems, they occur in micro electronics
through modified nodal analysis (MNA) for RLC networks. e.g., when

decoupling large linear subcircuits,
modeling transmission lines,
modeling pin packages in VLSI chips,
modeling circuit elements described by Maxwell’s equation using
partial element equivalent circuits (PEEC).
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for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
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 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:
Krylov subspace / Padé approximation / rational interpolation methods.
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Application Areas

Many other disciplines in computational sciences and engineering like

computational fluid dynamics (CFD),

computational electromagnetics,

chemical process engineering,

design of MEMS/NEMS (micro/nano-electrical-mechanical
systems),

computational acoustics,

. . .

Current trend: more and more multi-physics problems, i.e.,
coupling of several field equations, e.g.,

electro-thermal (e.g., bondwire heating in chip design),
fluid-structure-interaction,
. . .

Peter Benner and Lihong Feng.

Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3–22, 2015.
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf.
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer R© test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270.593, m = q = 2 ⇒
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

– Main computational cost for set-up data ≈ 22min.
– Computation of reduced models from set-up data: 44–49sec. (r = 20–70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Source: http://en.wikipedia.org/wiki/Neuron

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 12/82

http://en.wikipedia.org/wiki/Neuron


Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin
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A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Numerical Linear Algebra
Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).

Memory (in single precision): 4 · nx · ny bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is ‖X − X̂‖2 = σr+1.

Idea for dimension reduction
Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = 4r × (nx + ny ) bytes.
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Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kB

rank r = 50, ≈ 104 kB

rank r = 20, ≈ 42 kB
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB
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Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB

rank r = 100, ≈ 448 kB

rank r = 50, ≈ 224 kB
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Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices
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A different viewpoint

Linear Mapping

A matrix A ∈ R`×k represents a linear mapping

A : Rk → R` : x → y := Ax .

The truncated SVD ignores small singular values and thus the related left
and right singular vectors.

Consequence:

Vectors (almost) in the kernel of A do not contribute to range (A)
and can hardly or not at all be reconstructed from the input-output
relation (”A−1”)  ”unobservable” states.

Vectors (almost) in range (A)⊥ cannot be ”reached” from any
x ∈ Rk  ”unreachable/uncontrollable” states.

Hence, the truncated SVD ignores states hard to reconstruct and
hard to reach.
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Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).
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Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).

Lemma

L{ḟ (t)}(s) = sF (s)− f (0).
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Systems and Control Theory
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Lemma

L{ḟ (t)}(s) = sF (s)− f (0).

Note: for ease of notation, in the following we will use lower-case letters
for both, a function and its Laplace transform!

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 19/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
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The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(

C(sIn − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s).

G(s) is the transfer function of Σ.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 20/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(

C(sIn − A)−1B + D︸ ︷︷ ︸
=:G(s)

)
u(s).

G(s) is the transfer function of Σ.

Goal: Fast evaluation of mapping u → y .
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Systems and Control Theory
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.
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The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: min
order (Ĝ)≤r

‖G − Ĝ‖.
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Systems and Control Theory
Properties of linear systems

Definition
A linear system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is stable if its transfer function G (s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C− := {z ∈ C | <(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A, denoted by Λ (A), satisfies Λ (A) ⊂ C−.

Note that by abuse of notation, often stable system is used for asymptotically

stable systems.
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Hurwitz), i.e., the spectrum of A, denoted by Λ (A), satisfies Λ (A) ⊂ C−.
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Systems and Control Theory
Properties of linear systems

Questions:

For fixed x0 ∈ Rn and some x1 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of targets x1 reachable from x0?

For fixed x1 ∈ Rn and some x0 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of initial conditions x0 controllable to x1?

E.g., Uad ∈ {C k [0,T ], L2(0,T )}, possibly with constraints u(t) ≤ u(t) ≤ u(t).
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Systems and Control Theory
Properties of linear systems

Questions:

For fixed x0 ∈ Rn and some x1 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of targets x1 reachable from x0?

For fixed x1 ∈ Rn and some x0 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of initial conditions x0 controllable to x1?

Note: for LTI systems ẋ = Ax + Bu, both concepts are equivalent!

E.g., Uad ∈ {C k [0,T ], L2(0,T )}, possibly with constraints u(t) ≤ u(t) ≤ u(t).
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Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x1 ∈ Rn.

a) An LTI system with initial value x(0) = x0 is controllable to x1 in time
t1 > 0 if there exists u ∈ Uad such that x(t1; u) = x1.

(Equivalently, (t1, x
1) is reachable from (0, x0).)

b) x0 is controllable to x1 if there exists a t1 > 0 such that (t1, x
1) can be

reached from (0, x0).

c) If the system is controllable to x1 for all x0 ∈ Rn, it is (completely)
controllable.

The controllability set w.r.t. x1 is defined as C :=
⋃

t1>0

C(t1) where

C(t1) := {x0 ∈ Rn;∃u ∈ Uad : x(t1; u) = x1}.

In short: an LTI system is controllable ⇐⇒ C = Rn.

E.g., Uad ∈ {C k [0,T ], L2(0,T )}, possibly with constraints u(t) ≤ u(t) ≤ u(t).
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Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
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Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).
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Properties of linear systems

Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1 x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1 x1 − x0 =

∫ t1

0

e−AtBu(t)dt.
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Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1 x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1 x1 − x0 =

∫ t1

0

e−AtBu(t)dt.

Ansatz: u(t) = BT e−AT tc =⇒

e−At1 x1 − x0 =

∫ t1

0

e−AtBBT e−AT tdtc =: P(0, t1)c.
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Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1 x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1 x1 − x0 =

∫ t1

0

e−AtBu(t)dt.

Ansatz: u(t) = BT e−AT tc =⇒

e−At1 x1 − x0 =

∫ t1

0

e−AtBBT e−AT tdtc =: P(0, t1)c.

Hence, an LTI system is controllable iff this linear system is solvable for c ∈ Rn,
i.e., iff P(0, t1) is invertible. (Note: P(0, t1) = P(0, t1)T ≥ 0 by definition!)
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Systems and Control Theory
Properties of linear systems

Now: characterize controllability.

Theorem

For an LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system ẋ = Ax + Bu is controllable.

b) The finite time Gramian P(0, t1) is spd ∀ t1 > 0.

c) The controllability matrix

K(A,B) := [B,AB,A2B, . . . ,An−1B] ∈ Rn×n·m

has full rank n. (Note: range (K(A,B)) = C(t1) ∀ t1 > 0!)

d) If z is a left eigenvector of A, then z∗B 6= 0.

e) (Hautus test) rank([λI − A,B]) = n ∀λ ∈ C.
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Systems and Control Theory
Properties of linear systems

The Gramian characterization of controllability for stable systems can be based
on positive definiteness of the (infinite) controllability Gramian

P :=

∫ ∞
0

eAsBBT eAT sds,

using congruence of P(0, t1) to
t1∫
0

eAsBBT eAT sds and taking the limit t1 →∞.
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Systems and Control Theory
Properties of linear systems

The Gramian characterization of controllability for stable systems can be based
on positive definiteness of the (infinite) controllability Gramian

P :=

∫ ∞
0

eAsBBT eAT sds,

using congruence of P(0, t1) to
t1∫
0

eAsBBT eAT sds and taking the limit t1 →∞.

Theorem

For a stable LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system ẋ = Ax + Bu is controllable.

b) The controllability Gramian P is positive definite.
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Systems and Control Theory
Properties of linear systems

New question: suppose we have

y(t) = ỹ(t)

corresponding to two trajectories x , x̃ obtained by the same input function
u(t). Can we conclude that x(0) = x̃(0), or even stronger, that x(t) = x̃(t) for
t ≤ 0, t ≥ 0 (past/future)?
(Note that x(t0) = x̃(t0) is sufficient as trajectory uniquely determined. In
other words, is the mapping x0 → y(t) injective?)
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New question: suppose we have

y(t) = ỹ(t)

corresponding to two trajectories x , x̃ obtained by the same input function
u(t). Can we conclude that x(0) = x̃(0), or even stronger, that x(t) = x̃(t) for
t ≤ 0, t ≥ 0 (past/future)?
(Note that x(t0) = x̃(t0) is sufficient as trajectory uniquely determined. In
other words, is the mapping x0 → y(t) injective?)

Definition (Observability)

An LTI system is reconstructable (observable) if for solution trajectories
x(t), x̃(t) obtained with the same input function u, we have

y(t) = ỹ(t) ∀t ≤ 0 (∀t ≥ 0)

=⇒ x(t) = x̃(t) ∀t ≤ 0 (∀t ≥ 0).
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Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.
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Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.

Theorem

For an LTI system defined by (A,C) ∈ Rn×n × Rq×n, T.F.A.E.:

a) The LTI system is reconstructable.

b) The LTI system is observable.

c) The observability matrix

O(A,C) =
[
CT ,ATCT , (A2)TC , . . . , (An−1)TCT

]T
∈ Rnp×n has rank n.

d) If Ax = λx, then CT x 6= 0.

e) (Hautus test) rank

[
λI − A

C

]
= n.
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Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.

Theorem
A stable LTI system is observable if and only if the observability Gramian

Q :=

∞∫
0

eAT tCTCeAtdt

is symmetric positive definite.
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Controllability/observability are sometimes too strong.

Weaker requirement: is there u ∈ Uad to steer x0 to vicinity of x1?

For LTI systems, it suffices to consider x1 = 0!

Hence, is there u ∈ Uad so that limt→∞ x(t; u) = 0 (∀ x0 ∈ Rn)?

If the answer is yes, then the LTI system is called stabilizable
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Controllability/observability are sometimes too strong.

Weaker requirement: is there u ∈ Uad to steer x0 to vicinity of x1?

For LTI systems, it suffices to consider x1 = 0!

Hence, is there u ∈ Uad so that limt→∞ x(t; u) = 0 (∀ x0 ∈ Rn)?

If the answer is yes, then the LTI system is called stabilizable

Theorem

For an LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system is stabilizable.

b) ∃F ∈ Rm×n with Λ(A + BF ) ⊂ C−.

c) If p∗A = λ̃p∗ and Re(λ) ≥ 0, then p∗B 6= 0.

d) rank([A− λI ,B]) = n ∀λ ∈ C with Re(λ) ≥ 0.

e) In the (controllability) Kalman decomposition of (A,B),

V TAV =

[
A1 A2

0 A3

]
,V TB =

[
B1

0

]
,

we have Λ(A3) ⊂ C−.
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∃ dual concept of stabilizability, analogous to duality of controllability and
observability.

Definition (Detectability)

An LTI system is detectable if for any solution x(t) of ẋ = Ax with Cx(t) ≡ 0
we have lim

t→∞
x(t) = 0.

(We can not observe all of x , but the unobservable part is stable.)

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 26/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Systems and Control Theory
Properties of linear systems

∃ dual concept of stabilizability, analogous to duality of controllability and
observability.

Theorem

For an LTI system defined by (A,C) ∈ Rn×n × Rq×n, T.F.A.E.:

a) The LTI system is detectable.

b) (AT ,CT ) is stabilizable.

c) Ax = λx ,Re(λ) ≥ 0⇒ CT x 6= 0.

d) rank

[
λI − A

C

]
= n for all λ,Re(λ) ≥ 0.

e) In the observability Kalman decomposition of (AT ,CT ),

W TAW =

[
A1 0
A2 A3

]
,CW = [C1 0],

we have Λ (A3) ⊂ C−.
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.
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Realizations of Linear Systems

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Transfer function is invariant under state-space transformations,

T :

{
x → Tx ,

(A,B,C ,D) → (TAT−1,TB,CT−1,D),
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable
states:

d

dt

[
x
x1

]
=

[
A 0

0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+ Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+ Du(t),

for arbitrary Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rq×n2 and any n1, n2 ∈ N.
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Realizations are not unique!
Hence,

(A,B,C ,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[

C 0
]
,D

)
,

(TAT−1,TB,CT−1,D),

([
A 0

0 A2

]
,

[
B
0

]
,
[

C C2

]
,D

)
,

are all realizations of Σ!
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.
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Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.

Theorem

A realization (A,B,C ,D) of a linear system is minimal ⇐⇒
(A,B) is controllable and (A,C ) is observable.
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Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. Λ (A) ⊂ C−. Then:

Theorem

Given a stable minimal linear system Σ : (A,B,C ,D), a balanced
realization is obtained by the state-space transformation with

Tb := Σ−
1
2 V TR,

where P = STS , Q = RTR (e.g., Cholesky decompositions) and
SRT = UΣV T is the SVD of SRT .

Proof. Easy.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 28/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Systems and Control Theory
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Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Proof. Exercise!
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−TATTT + TBBTTT .

This is equivalent to

0 = A(T−1P̂T−T ) + (T−1P̂T−T )AT + BBT .

The uniqueness of the solution of the Lyapunov equation implies that P̂ = TPTT and,
analogously, Q̂ = T−TQT−1. Therefore,

P̂Q̂ = TPQT−1,

showing that Λ (P̂Q̂) = Λ (PQ) = {σ2
1 , . . . , σ

2
n}.
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Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Remark
For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0).

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)
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Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)
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Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

= M2
∫ ∞
−∞

u(ω)Hu(ω) dω < ∞.

(Here, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M <∞ ⇒∫ ∞

−∞
y(ω)Hy(ω) dω =

∫ ∞
−∞

u(ω)HG(ω)HG(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2‖u(ω)‖2 dω

= M2
∫ ∞
−∞

u(ω)Hu(ω) dω < ∞.

=⇒ y ∈ Lq
2
∼= Lq2(−∞,∞).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Consequently, the 2-induced operator norm

‖G‖∞ := sup
‖u‖2 6=0

‖Gu‖2

‖u‖2

is well defined. It can be shown that

‖G‖∞ = sup
ω∈R
‖G (ω)‖ = sup

ω∈R
σmax (G (ω)) .
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Consequently, the 2-induced operator norm

‖G‖∞ := sup
‖u‖2 6=0

‖Gu‖2

‖u‖2

is well defined. It can be shown that

‖G‖∞ = sup
ω∈R
‖G (ω)‖ = sup

ω∈R
σmax (G (ω)) .

Sketch of proof:

‖G(ω)u(ω)‖ ≤ ‖G(ω)‖‖u(ω)‖ ⇒ ”≤”.
Construct u with ‖Gu‖2 = supω∈R ‖G(ω)‖‖u‖2.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D.

Hardy space H∞
Function space of matrix-/scalar-valued functions that are analytic and
bounded in C+.
The H∞-norm is

‖F‖∞ := sup
re s>0

σmax (F (s)) = sup
ω∈R

σmax (F (ω)) .

Stable transfer functions are in the Hardy spaces

H∞ in the SISO case (single-input, single-output, m = q = 1);

Hq×m
∞ in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D.

Consequence of Parseval identity/Plancherel Theorem

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D.

Consequence of Parseval identity/Plancherel Theorem

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!

H∞ approximation error

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂ + D̂.

‖y − ŷ‖2 = ‖Gu − Ĝu‖2 ≤ ‖G − Ĝ‖∞‖u‖2.

=⇒ compute reduced-order model such that ‖G − Ĝ‖∞ < tol!
Note: error bound holds in time- and frequency domain due to Plancherel!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 :=
1

2π

(
sup

reσ>0

∫ ∞
−∞
‖F (σ + ω)‖2

F dω

) 1
2

=
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Stable transfer functions are in the Hardy spaces

H2 in the SISO case (single-input, single-output, m = q = 1);

Hq×m
2 in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

H2 approximation error for impulse response (u(t) = u0δ(t))

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂.

‖y − ŷ‖2 = ‖Gu0δ − Ĝu0δ‖2 ≤ ‖G − Ĝ‖2‖u0‖.
=⇒ compute reduced-order model such that ‖G − Ĝ‖2 < tol!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Theorem (Practical Computation of the H2-norm)

‖F‖2
2 = tr

(
BTQB

)
= tr

(
CPCT

)
,

where P,Q are the controllability and observability Gramians of the
corresponding LTI system.
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol

H∞-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable H∞-norm bound.

H2-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)

Hankel-norm
‖G‖H := σmax

optimal Hankel norm approximation (AAK theory).
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Qualitative and Quantitative Study of the Approximation Error
Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

absolute errors ‖G(ωj)− Ĝ(ωj)‖2, ‖G(ωj)− Ĝ(ωj)‖∞ (j = 1, . . . ,Nω);

relative errors
‖G(ωj )−Ĝ(ωj )‖2

‖G(ωj )‖2
,
‖G(ωj )−Ĝ(ωj )‖∞
‖G(ωj )‖∞

;

”eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:
for SISO system, log-log plot frequency vs. |G(ω)| (or |G(ω)− Ĝ(ω)|)
in decibels, 1 dB ' 20 log10(value).

For MIMO systems, q ×m array of plots Gij .
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Model Reduction by Projection
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e.,
want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity∫ t

−∞
u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R, ∀u ∈ L2(R,Rm).

(“system does not generate energy”).
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Model Reduction by Projection
Projection Basics

Definition (Projector)

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range (P), then P is
projector onto V. On the other hand, if {v1, . . . , vr} is a basis of V and
V = [ v1, . . . , vr ], then P = V (V TV )−1V T is a projector onto V.
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Model Reduction by Projection
Projection Basics

Definition (Projector)

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range (P), then P is
projector onto V. On the other hand, if {v1, . . . , vr} is a basis of V and
V = [ v1, . . . , vr ], then P = V (V TV )−1V T is a projector onto V.

Lemma (Projector Properties)

If P = PT , then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

P is the identity operator on V, i.e., Pv = v ∀v ∈ V.

I − P is the complementary projector onto ker P.

If V is an A-invariant subspace corresponding to a subset of A’s spectrum,
then we call P a spectral projector.

Let W ⊂ Rn be another r -dimensional subspace and W = [ w1, . . . ,wr ]
be a basis matrix for W, then P = V (W TV )−1W T is an oblique
projector onto V along W.
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Definition (Projector)
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Model Reduction by Projection
Projection-based MOR Methods

Methods:

1 Modal Truncation

2 Balanced Truncation

3 Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)

4 many more. . .

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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Model Reduction by Projection
Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ so that

‖x − x̃‖ = ‖x − V x̂‖,

and the reduced-order model is

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).
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Model Reduction by Projection
Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(

VW T ẋ − AVW T x − Bu
)
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Model Reduction by Projection
Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(

VW T ẋ − AVW T x − Bu
)

= W T ẋ︸ ︷︷ ︸
˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u
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Model Reduction by Projection
Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(

VW T ẋ − AVW T x − Bu
)

= W T ẋ︸ ︷︷ ︸
˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u

= ˙̂x − Âx̂ − B̂u = 0.
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Basic Principle
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.
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V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Simple computation for large-scale systems, using, e.g., Krylov subspace
methods (Lanczos, Arnoldi), Jacobi-Davidson method.
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Modal Truncation

Basic method:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = C(sI − A)−1B + D = CTT−1(sI − A)−1TT−1B + D

= CT (sI − T−1AT )−1T−1B + D

= [ Ĉ , C2 ]

[
(sIr − Â)−1

(sIn−r − A2)−1

][
B̂
B2

]
+ D

= Ĝ(s) + C2(sIn−r − A2)−1B2,
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Â
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]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = Ĝ(s) + C2(sIn−r − A2)−1B2,

observing that ‖G − Ĝ‖∞ = supω∈R σmax(C2(ωIn−r − A2)−1B2), and

C2(ωIn−r − A2)−1B2 = C2diag

(
1

ω − λr+1
, . . . ,

1

ω − λn

)
B2.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 38/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Difficulties:

Eigenvalues contain only limited system information.

Dominance measures are difficult to compute.
([Litz ’79] use Jordan canoncial form; otherwise merely heuristic criteria,
e.g., [Varga ’95]. Recent improvement: dominant pole algorithm.)

Error bound not computable for really large-scale problems.
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Basic Principle
Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n = 348, m = q = 1, reduced using 13 dominant complex
conjugate eigenpairs, error bound yields ‖G − Ĝ‖∞ ≤ 1.21 · 103

Bode plots of transfer functions and error function

MATLAB R© demo.
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Basic Principle
Extensions

Base enrichment
Static modes are defined by setting ẋ = 0 and assuming unit loads, i.e.,
u(t) ≡ ej , j = 1, . . . ,m:

0 = Ax(t) + Bej =⇒ x(t) ≡ −A−1bj .

Projection subspace V is then augmented by A−1[ b1, . . . , bm ] = A−1B.

Interpolation-projection framework =⇒ G (0) = Ĝ (0)!

If two sided projection is used, complimentary subspace can be
augmented by A−TCT =⇒ G ′(0) = Ĝ ′(0)!

Note: if m 6= q, add random vectors or delete some of the columns in A−TCT .
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Basic Principle
Extensions

Guyan reduction (static condensation)

Partition states in masters x1 ∈ Rr and slaves x2 ∈ Rn−r (FEM terminology)
Assume stationarity, i.e., ẋ = 0 and solve for x2 in

0 =

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u

⇒ x2 = −A−1
22 A21x1 − A−1

22 B2u.

Inserting this into the first part of the dynamic system

ẋ1 = A11x1 + A12x2 + B1u, y = C1x1 + C2x2

then yields the reduced-order model

ẋ1 = (A11 − A12A−1
22 A21)x1 + (B1 − A12A−1

22 B2)u

y = (C1 − C2A−1
22 A21)x1 − C2A−1

22 B2u.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: this follows using the spectral decomposition A = XDX−1, with
X = [ x1, . . . , xn] the right and X−1 =: Y = [y1, . . . , yn]H the left eigenvector matrices:

G(s) = C(sI − XDX−1)−1B = CX (sI − diag {λ1, . . . , λn})−1YB

= [Cx1, . . . ,Cxn ]


1

s−λ1

. . .
1

s−λn


 yH

1 B
...
yH
n B


=

n∑
k=1

(Cxk )(yH
k B)

s − λk
.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: Rk = (Cxk)(yH
k B) are the residues of G in the sense of the residue

theorem of complex analysis:

res (G , λ`) = lim
s→λ`

(s − λ`)G(s) =
n∑

k=1

lim
s→λ`

s − λ`
s − λk︸ ︷︷ ︸

=

{
0 for k 6= `
1 for k = `

Rk = R`.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.
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Modal Truncation
Dominant Pole Algorithm

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.

Remark
The dominant modes have most important influence on the input-output
behavior of the system and are responsible for the ”peaks”’ in the frequency
response.
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

ω

‖G
(
ω

)‖
2

exact model, n = 217
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

ω

‖G
(
ω

)‖
2

exact model, n = 217

=(λ) of dominant poles

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 42/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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exact model, n = 217
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k = 46 dominant poles

k = 46, smallest <(λ) + static modes
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

ω

‖G
(
ω

)‖
2

exact model, n = 217

=(λ) of dominant poles
k = 46 dominant poles

k = 46, smallest <(λ) + static modes

Algorithms for computing dominant poles and eigenvectors:

Subspace Accelerated Dominante Pole Algorithm
(SADPA),

Rayleigh-Quotient-Iteration (RQI),

Jacobi-Davidson-Method.
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Outline

1 Introduction

2 Mathematical Basics

3 Model Reduction by Projection

4 Modal Truncation

5 Balanced Truncation
The basic method
Theoretical Background
Singular Perturbation Approximation
Balancing-Related Methods

6 Solving Large-Scale Matrix Equations

7 Final Remarks
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Balanced Truncation

Basic principle:

Recall: a stable system Σ, realized by (A,B,C ,D), is called
balanced, if the Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.
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Balanced Truncation

Basic principle:

Recall: a stable system Σ, realized by (A,B,C ,D), is called
balanced, if the Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
,D

)
Truncation  (Â, B̂, Ĉ , D̂) := (A11,B1,C1,D).
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Balanced Truncation

Motivation:

The HSVs Λ (PQ)
1
2 = {σ1, . . . , σn} are system invariants: they are

preserved under

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)
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Balanced Truncation

Motivation:

The HSVs Λ (PQ)
1
2 = {σ1, . . . , σn} are system invariants: they are

preserved under

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

in transformed coordinates, the Gramians satisfy

(TAT−1)(TPTT ) + (TPTT )(TAT−1)T + (TB)(TB)T = 0,

(TAT−1)T (T−TQT−1) + (T−TQT−1)(TAT−1) + (CT−1)T (CT−1) = 0

⇒ (TPTT )(T−TQT−1) = TPQT−1,

hence Λ (PQ) = Λ ((TPTT )(T−TQT−1)).
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Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .
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Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 )
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Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1
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Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1

= Σ
− 1

2
1 [ Ir , 0 ]

[
Σ1

Σ2

][
Ir
0

]
Σ
− 1

2
1
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Balanced Truncation

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1

= Σ
− 1

2
1 [ Ir , 0 ]

[
Σ1

Σ2

] [
Ir
0

]
Σ
− 1

2
1 = Σ

− 1
2

1 Σ1Σ
− 1

2
1 = Ir

=⇒ VW T is an oblique projector, hence balanced truncation is a

Petrov-Galerkin projection method.
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Balanced Truncation

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 44/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Balanced Truncation

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

Assumptions (for now): t0 = 0, x0 = x(0) = 0, D = 0.
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Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

State-Space Description for I/O-Relation

Variation-of-constants =⇒

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.
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S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

S : U → Y is a linear operator between (function) spaces.

Recall: A ∈ Rn×m is a linear operator, A : Rm → Rn!

Basic Idea: use SVD approximation as for matrix A!

Problem: in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rq×n.

Alternative to State-Space Operator: Hankel Operator

Instead of

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

use Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rq×n.

Alternative to State-Space Operator: Hankel Operator

Instead of

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

use Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

 Hankel singular values {σj}∞j=1 : σ1 ≥ σ2 ≥ . . . ≥ 0.
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rq×n.

Alternative to State-Space Operator: Hankel Operator

Instead of

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

use Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

 Hankel singular values {σj}∞j=1 : σ1 ≥ σ2 ≥ . . . ≥ 0.

=⇒ SVD-type approximation of H possible!
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rq×n.

Alternative to State-Space Operator: Hankel Operator

H compact

⇓
H has discrete SVD

⇓
Hankel singular values
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Balanced Truncation
Theoretical Background

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rq×n.

Alternative to State-Space Operator: Hankel Operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed

⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.
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H : u− 7→ y+, y+(t) =

∫ 0
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CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed

⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ =: CeAt

∫ 0

−∞
e−AτBu−(τ) dτ︸ ︷︷ ︸

=:z
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ =: CeAt

∫ 0

−∞
e−AτBu−(τ) dτ︸ ︷︷ ︸

=:z

= CeAtz.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 47/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) =

∫ ∞
0

BT eA
T (τ−t)CT y+(τ) dτ
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) =

∫ ∞
0

BT eA
T (τ−t)CT y+(τ) dτ = BT e−AT t

∫ ∞
0

eA
T τCT y+(τ) dτ.
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) = = BT e−AT t
∫ ∞

0
eA

T τCT y+(τ) dτ.

H∗Hu−(t) = BT e−AT t
∫ ∞

0
eA

T τCTCeAτ z dτ
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) = = BT e−AT t
∫ ∞

0
eA

T τCT y+(τ) dτ.

Hence,

H∗Hu−(t) = BT e−AT t
∫ ∞

0
eA

T τCTCeAτ z dτ

= BT e−AT t
∫ ∞

0
eA

T τCTCeAτ dτ︸ ︷︷ ︸
≡Q

z
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The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) = = BT e−AT t
∫ ∞

0
eA

T τCT y+(τ) dτ.

Hence,

H∗Hu−(t) = BT e−AT t
∫ ∞

0
eA

T τCTCeAτ z dτ

= BT e−AT tQz
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

y+(t) = Hu−(t) =

∫ 0

−∞
CeA(t−τ)Bu−(τ) dτ = CeAtz.

Singular values of H = square roots of eigenvalues of H∗H,

H∗y+(t) = = BT e−AT t
∫ ∞

0
eA

T τCT y+(τ) dτ.

Hence,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H, Hence,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ
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The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ 0

−∞
e−AτBBT e−AT τ dτ Qz
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ 0

−∞
e−AτBBT e−AT τ dτ Qz

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz

=
1

σ2
PQz
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Proof: Singular values of H = square roots of eigenvalues of H∗H,

H∗Hu−(t) = BT e−AT tQz
.

= σ2u−(t).

=⇒ u−(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0
−∞ e−AτBu−(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz

=
1

σ2
PQz

⇐⇒ PQz = σ2z.
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem
Let P,Q be the controllability and observability Gramians of an LTI
system Σ. Then the Hankel singular values Λ (PQ)

1
2 = {σ1, . . . , σn} are

the singular values of the Hankel operator associated to Σ.

Theorem

Let the reduced-order system Σ̂ : (Â, B̂, Ĉ , D̂) with r ≤ n̂ be computed
by balanced truncation. Then the reduced-order model Σ̂ is balanced,
stable, minimal, and its HSVs are σ1, . . . , σr .
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Balanced Truncation
The Hankel Singular Values are Singular Values!

Theorem

Let the reduced-order system Σ̂ : (Â, B̂, Ĉ , D̂) with r ≤ n̂ be computed
by balanced truncation. Then the reduced-order model Σ̂ is balanced,
stable, minimal, and its HSVs are σ1, . . . , σr .

Proof: Note that in balanced coordinates, the Gramians are diagonal and equal to

diag(Σ1,Σ2) = diag(σ1, . . . , σr , σr+1, . . . , σn).

Hence, the Gramian satisfies[
A11 A12

A21 A22

] [
Σ1

Σ2

]
+

[
Σ1

Σ2

] [
A11 A12

A21 A22

]T
+

[
B1

B2

] [
B1

B2

]T
= 0,

whence we obtain the ”controllability Lyapunov equation” of the reduced-order system,

A11Σ1 + Σ1A
T
11 + B1B

T
1 = 0.

The result follows from Â = A11, B̂ = B1, Σ1 > 0, the solution theory of Lyapunov

equations and the analogous considerations for the observability Gramian. (Minimality

is a simple consequence of P̂ = Σ1 = Q̂ > 0.)
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Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u, y = [ C1, C2 ]

[
x1

x2

]
+ Du

is in balanced coordinates.
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Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u, y = [ C1, C2 ]

[
x1

x2

]
+ Du

is in balanced coordinates.
Balanced truncation would set x2 = 0 and use (A11,B1,C1,D) as reduced-order
model, thereby the information present in the remaining model is ignored!
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Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u, y = [ C1, C2 ]

[
x1

x2

]
+ Du

is in balanced coordinates.
Balanced truncation would set x2 = 0 and use (A11,B1,C1,D) as reduced-order
model, thereby the information present in the remaining model is ignored!

Particularly, if G(0) = Ĝ(0) (”zero steady-state error”) is required, one can
apply the same condensation technique as in Guyan reduction: instead of
x2 = 0, set ẋ2 = 0. This yields the reduced-order model

ẋ1 = (A11 − A12A−1
22 A21)x1 + (B1 − A12A−1

22 B2)u,

y = (C1 − C2A−1
22 A21)x1 + (D − C2A−1

22 B2)u,

with

the same properties as the reduced-order model w.r.t. stability, minimality,
error bound, but D̂ 6= D;

zero steady-state error, G(0) = Ĝ(0) as desired.
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Singular Perturbation Approximation (aka Balanced Residualization)

Particularly, if G(0) = Ĝ(0) (”zero steady-state error”) is required, one can
apply the same condensation technique as in Guyan reduction: instead of
x2 = 0, set ẋ2 = 0. This yields the reduced-order model

ẋ1 = (A11 − A12A−1
22 A21)x1 + (B1 − A12A−1

22 B2)u,

y = (C1 − C2A−1
22 A21)x1 + (D − C2A−1

22 B2)u,

with

the same properties as the reduced-order model w.r.t. stability, minimality,
error bound, but D̂ 6= D;

zero steady-state error, G(0) = Ĝ(0) as desired.

Note:

A22 invertible as in balanced coordinates, A22Σ2 + Σ2AT
22 + B2BT

2 = 0 and
(A22,B2) controllable, Σ2 > 0 ⇒ A22 stable.

If the original system is not balanced, first compute a minimal realization
by applying balanced truncation with r = n̂.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.

Classical Balanced Truncation (BT) [Mullis/Roberts ’76, Moore ’81]

P = controllability Gramian of system given by (A,B,C ,D).

Q = observability Gramian of system given by (A,B,C ,D).

P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.

LQG Balanced Truncation (LQGBT) [Jonckheere/Silverman ’83]

P/Q = controllability/observability Gramian of closed-loop system
based on LQG compensator.

P,Q solve dual algebraic Riccati equations (AREs)

0 = AP + PAT − PCTCP + BTB,

0 = ATQ + QA− QBBTQ + CTC .
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.

Balanced Stochastic Truncation (BST) [Desai/Pal ’84, Green ’88]

P = controllability Gramian of system given by (A,B,C ,D), i.e.,
solution of Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power
spectrum of system given by (A,B,C ,D), i.e., solution of ARE

ÂTQ + QÂ + QBW (DDT )−1BT
W Q + CT (DDT )−1C = 0,

where Â := A− BW (DDT )−1C , BW := BDT + PCT .
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.

Positive-Real Balanced Truncation (PRBT) [Green ’88]

Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

P,Q solve dual AREs

0 = ĀP + PĀT + PCT R̄−1CP + BR̄−1BT ,

0 = ĀTQ + QĀ + QBR̄−1BTQ + CT R̄−1C ,

where R̄ = D + DT , Ā = A− BR̄−1C .
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Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn > 0,

and truncate corresponding realization at size r with σr > σr+1.

Other Balancing-Based Methods

Bounded-real balanced truncation (BRBT) – based on bounded real
lemma [Opdenacker/Jonckheere ’88];

H∞ balanced truncation (HinfBT) – closed-loop balancing based on
H∞ compensator [Mustafa/Glover ’91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.
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Balancing-Related Methods
Properties

Guaranteed preservation of physical properties like
– stability (all),
– passivity (PRBT),
– minimum phase (BST).

Computable error bounds, e.g.,

BT: ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σBT
j ,

LQGBT: ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σLQG
j√

1+(σLQG
j )2

BST: ‖G − Gr‖∞ ≤

 n∏
j=r+1

1+σBST
j

1−σBST
j

− 1

 ‖G‖∞,
Can be combined with singular perturbation approximation for
steady-state performance.
Computations can be modularized.
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Solving Large-Scale Matrix Equations
Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for A,G = GT ,W = W T ∈ Rn×n

given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not applicable!
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Solving Large-Scale Matrix Equations
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkz
T
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkz
T
k .

=⇒ Goal: compute Z (r) ∈ Rn×r directly w/o ever forming X !
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Solving Large-Scale Matrix Equations
Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation

AX + XB = W AXB − X = W

with data A ∈ Rn×n, B ∈ Rm×m, W ∈ Rn×m and unknown X ∈ Rn×m.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

AX + XAT = W AXAT − X = W

with data A ∈ Rn×n, W = W T ∈ Rn×n and unknown X ∈ Rn×n.

Here: focus on (Sylvester and) Lyapunov equations; analogous results
and methods for discrete versions exist.
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Linear Matrix Equations
Solvability

Using the Kronecker (tensor) product, AX + XB = W is equivalent to(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W ) .

Hence,

Sylvester equation has a unique solution

⇐⇒

M := (Im ⊗ A) +
(
BT ⊗ In

)
is invertible.

⇐⇒

0 6∈ Λ (M) = Λ ((Im ⊗ A) + (BT ⊗ In)) = {λj + µk | λj ∈ Λ (A), µk ∈ Λ (B)}.

⇐⇒

Λ (A) ∩ Λ (−B) = ∅

Corollary
A,B Hurwitz =⇒ Sylvester equation has unique solution.
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Linear Matrix Equations
Complexity Issues

Solving the Sylvester equation

AX + XB = W

via the equivalent linear system of equations(
(Im ⊗ A) +

(
BT ⊗ In

))
vec (X ) = vec (W )

requires

LU factorization of nm × nm matrix; for n ≈ m, complexity is 2
3n

6;

storing n ·m unknowns: for n ≈ m we have n2 data for X , but up to
n4 data for triangular factors!

Example

n = m = 1, 000 ⇒ Gaussian elimination on an Intel core i7 (Westmere, 6
cores, 3.46 GHz  83.2 GFLOP peak) would take > 94 DAYS and 7.3
TB of memory!
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Linear Matrix Equations
Complexity Issues
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(Im ⊗ A) +
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BT ⊗ In
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Numerical Methods for Solving Lyapunov Equations
Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap);
Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling’s method for Lyapunov equations AX + XAT + GGT = 0

with A Hurwitz (lyapchol).

All based on the fact that if A,BT are in Schur form, then

M = (Im ⊗ A) +
(
BT ⊗ In

)
is block-upper triangular. Hence, solve Mx = b by back-substitution.

Clever implementation of back-substitution process requires nm(n + m)
flops.

For Sylvester equations, B in Hessenberg form is enough ( 
Hessenberg-Schur method).

Hammarling’s method computes Cholesky factor Y of X directly.

All methods require Schur decomposition of A and Schur or Hessenberg
decomposition of B ⇒ need QR algorithm which requires 25n3 flops for
Schur decomposition.

Not feasible for large-scale problems (n > 10, 000).
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Numerical Methods for Solving Lyapunov Equations
The Sign Function Method

Definition

For Z ∈ Rn×n with Λ (Z ) ∩ ıR = ∅ and Jordan canonical form

Z = S

[
J+ 0

0 J−

]
S−1

the matrix sign function is

sign (Z ) := S

[
Ik 0

0 −In−k

]
S−1.
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Numerical Methods for Solving Lyapunov Equations
The Sign Function Method

Definition

For Z ∈ Rn×n with Λ (Z ) ∩ ıR = ∅ and Jordan canonical form

Z = S

[
J+ 0

0 J−

]
S−1

the matrix sign function is

sign (Z ) := S

[
Ik 0

0 −In−k

]
S−1.

Lemma

Let T ∈ Rn×n be nonsingular and Z as before, then

sign
(
TZT−1

)
= T sign (Z )T−1
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Numerical Methods for Solving Lyapunov Equations
The Sign Function Method

Computation of sign (Z )

sign (Z ) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z , Zj+1 ←
1

2

(
cjZj +

1

cj
Z−1
j

)
, j = 1, 2, . . .

=⇒ sign (Z ) = limj→∞ Zj .

cj > 0 is scaling parameter for convergence acceleration and rounding error
minimization, e.g.

cj =

√
‖Z−1

j ‖F
‖Zj‖F

,

based on “equilibrating” the norms of the two summands [Higham ’86].
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Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If X ∈ Rn×n is a solution of AX + XAT + W = 0, then[

In −X

0 In

]
︸ ︷︷ ︸

=T−1

[
A W

0 −AT

]
︸ ︷︷ ︸

=:H

[
In X

0 In

]
︸ ︷︷ ︸

=:T

=

[
A 0

0 −AT

]
.

Hence, if A is Hurwitz (i.e., asymptotically stable), then

sign (H) = sign

(
T

[
A 0

0 −AT

]
T−1

)
= T sign

([
A 0

0 −AT

])
T−1

=

[
−In 2X

0 In

]
.
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Solving Lyapunov Equations with the Matrix Sign Function Method

Apply sign function iteration Z ← 1
2 (Z + Z−1) to H =

[
A W

0 −AT

]
:

H + H−1 =

[
A W
0 −AT

]
+

[
A−1 A−1WA−T

0 −A−T
]

=⇒ Sign function iteration for Lyapunov equation:

A0 ←A, Aj+1 ← 1
2

(
Aj + A−1

j

)
,

W0←G , Wj+1← 1
2

(
Wj + A−1

j WjA
−T
j

)
,

j = 0, 1, 2, . . . .

Define A∞ := limj→∞ Aj , W∞ := limj→∞Wj .

Theorem
If A is Hurwitz, then

A∞ = −In and X =
1

2
W∞.
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Solving Lyapunov Equations with the Matrix Sign Function Method
Factored form

Recall sign function iteration for AX + XAT + W = 0:

A0 ←A, Aj+1 ← 1
2

(
Aj + A−1

j

)
,

W0←G , Wj+1← 1
2

(
Wj + A−1

j WjA
−T
j

)
,

j = 0, 1, 2, . . . .

Now consider the second iteration for W = BBT , starting with
W0 = BBT =: B0BT

0 :

1

2

(
Wj + A−1

j WjA
−T
j

)
=

1

2

(
BjB

T
j + A−1

j BjB
T
j A−T

j

)
=

1

2

[
Bj A−1

j Bj

] [
Bj A−1

j Bj

]T
.

Hence, obtain factored iteration

Bj+1 ←
1√
2

[
Bj A−1

j Bj

]
with S := 1√

2
limj→∞ Bj and X = SST .
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Solving Lyapunov Equations with the Matrix Sign Function Method
Factored form [B./Quintana-Ort́ı ’97]

Factored sign function iteration for A(SST ) + (SST )AT + BBT = 0

A0←A, Aj+1← 1
2

(
Aj + A−1

j

)
,

B0←B, Bj+1← 1√
2

[
Bj A−1

j Bj

]
,

j = 0, 1, 2, . . . .

Remarks:

To get both Gramians, run in parallel

Cj+1 ←
1√
2

[
Cj

CjA
−1
j

]
.

To avoid growth in numbers of columns of Bj (or rows of Cj): column
compression by RRLQ or truncated SVD.

Several options to incorporate scaling, e.g., scale ”A”-iteration only.

Simple stopping criterion: ‖Aj + In‖F ≤ tol .
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Numerical Methods for Solving Lyapunov Equations
The ADI Method

Recall Peaceman Rachford ADI:
Consider Au = s where A ∈ Rn×n spd, s ∈ Rn. ADI Iteration Idea:
Decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration
If H,V spd ⇒ ∃pk , k = 1, 2, . . . such that

u0 = 0
(H + pk I )uk− 1

2
= (pk I − V )uk−1 + s

(V + pk I )uk = (pk I − H)uk− 1
2

+ s

converges to u ∈ Rn solving Au = s.
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Numerical Methods for Solving Lyapunov Equations

The Lyapunov operator

L : X 7→ AX + XAT

can be decomposed into the linear operators

LH : X 7→ AX , LV : X 7→ XAT .

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [Wachspress ’88]

X0 = 0
(A + pk I )Xk− 1

2
= −W − Xk−1(AT − pk I )

(A + pk I )X
T
k = −W − XT

k− 1
2

(AT − pk I ).
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Numerical Methods for Solving Lyapunov Equations
Low-Rank ADI

Consider AX + XAT = −BBT for stable A; B ∈ Rn×m with m� n.

ADI iteration for the Lyapunov equation [Wachspress ’95]

For k = 1, . . . , kmax

X0 = 0
(A + pk I )Xk− 1

2
= −BBT − Xk−1(AT − pk I )

(A + pk I )X
T
k = −BBT − XT

k− 1
2

(AT − pk I )

Rewrite as one step iteration and factorize Xk = ZkZ
T
k , k = 0, . . . , kmax

Z0Z
T
0 = 0

ZkZ
T
k = −2pk(A + pk I )

−1BBT (A + pk I )
−T

+(A + pk I )
−1(A− pk I )Zk−1Z

T
k−1(A− pk I )

T (A + pk I )
−T

. . . low-rank Cholesky factor ADI
[Penzl ’97/’00, Li/White ’99/’02, B./Li/Penzl ‘99/’08, Gugercin/Sorensen/Antoulas ’03]
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Solving Large-Scale Matrix Equations
Numerical Methods for Solving Lyapunov Equations

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1]

[Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

[Li/White ’02]

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 66/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Solving Large-Scale Matrix Equations
Numerical Methods for Solving Lyapunov Equations

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1]

[Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

[Li/White ’02]

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.

Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 66/82



Introduction Mathematical Basics MOR by Projection Modal Truncation Balanced Truncation Matrix Equations Fin

Numerical Methods for Solving Lyapunov Equations
Lyapunov equation 0 = AX + XAT + BBT .

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
√
−2 re p1(A + p1I )−1B, Z1 ← V1

FOR k = 2, 3, . . .

Vk ←
√

re pk
re pk−1

(
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

)
Zk ←

[
Zk−1 Vk

]
Zk ← rrlq(Zk , τ) column compression

At convergence, ZkmaxZ
T
kmax
≈ X , where (without column compression)

Zkmax =
[
V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps

[B./Li/Penzl ’99/’08] or using new idea employing the relation of 2 consecutive

complex factors [B./Kürschner/Saak ’11].
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Mathematical model: boundary control for
linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, q = 6.

FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841. 2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Solve dual Lyapunov equations needed for balanced truncation, i.e.,

APMT + MPAT + BBT = 0, ATQM + MTQA + CTC = 0,

for n = 79, 841.
25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.
No factorization of mass matrix required.
Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-MATLAB.

CPU times: 626 / 356 sec.
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Numerical Results for ADI
Scaling Computations by Martin Köhler ’10

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).
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Numerical Results for ADI
Scaling Computations by Martin Köhler ’10

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

CPU Times
n M.E.S.S.1 (C) LyaPack M.E.S.S. (MATLAB)

100 0.023 0.124 0.158
625 0.042 0.104 0.227

2,500 0.159 0.702 0.989
10,000 0.965 6.22 5.644
40,000 11.09 71.48 34.55
90,000 34.67 418.5 90.49

160,000 109.3 out of memory 219.9
250,000 193.7 out of memory 403.8
562,500 930.1 out of memory 1216.7

1,000,000 2220.0 out of memory 2428.6
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Numerical Results for ADI
Scaling Computations by Martin Köhler ’10

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using
M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Note: for n = 1, 000, 000, first sparse LU needs ∼ 1, 100 sec., using
UMFPACK this reduces to 30 sec.
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad ’90, Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).

Rational Krylov [Druskin/Simoncini ’11].
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[
V1, . . . , Vr

]
.

Note:
1 ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
2 Similar approach: ADI-preconditioned global Arnoldi method

[Jbilou ’08].
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, q = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak ’10.
Max Planck Institute Magdeburg c© Peter Benner, MOR via System Balancing 72/82
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, q = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak ’10.
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Numerical Methods for Solving Lyapunov Equations
Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, n = 79, 841.

M.E.S.S. w/o Galerkin projection and column compression

Rank of solution factors: 532 / 426

M.E.S.S. with Galerkin projection and column compression

Rank of solution factors: 269 / 205
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Solving Large-Scale Matrix Equations
Numerical example for BT: Optimal Cooling of Steel Profiles

n = 1, 357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79, 841, Absolute Error

– BT model computed using
M.E.S.S. in MATLAB,

– dualcore, computation time:
<10 min.
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Solving Large-Scale Matrix Equations
Numerical example for BT: Microgyroscope (Butterfly Gyro)

By applying AC voltage to
electrodes, wings are forced to
vibrate in anti-phase in wafer
plane.

Coriolis forces induce motion of
wings out of wafer plane yielding
sensor data.

Vibrating micro-mechanical
gyroscope for inertial navigation.

Rotational position sensor.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.
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Solving Large-Scale Matrix Equations
Numerical example for BT: Microgyroscope (Butterfly Gyro)

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, q = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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Solving Large-Scale Algebraic Riccati Equations
Theory [Lancaster/Rodman ’95]

Theorem
Consider the (continuous-time) algebraic Riccati equation (ARE)

0 = R(X ) = CTC + ATX + XA− XBBTX ,

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, (A,B) stabilizable, (A,C) detectable.
Then:

(a) There exists a unique stabilizing X∗ ∈ {X ∈ Rn×n |R(X ) = 0 }, i.e.,
Λ (A− BBTX∗) ∈ C−.

(b) X∗ = XT
∗ ≥ 0 and X∗ ≥ X for all X ∈ {X ∈ Rn×n |R(X ) = 0 }.

(c) If (A,C) observable, then X∗ > 0.

(d) span

{[
In
−X∗

]}
is the unique invariant subspace of the Hamiltonian

matrix

H =

[
A BBT

CTC −AT

]
corresponding to Λ (H) ∩ C−.
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Solving Large-Scale Algebraic Riccati Equations
Numerical Methods [Bini/Iannazzo/Meini ’12]

Numerical Methods (incomplete list)

Invariant subspace methods ( eigenproblem for Hamiltonian matrix):

– Schur vector method (care) [Laub ’79]

– Hamiltonian SR algorithm [Bunse-Gerstner/Mehrmann ’86]

– Symplectic URV-based method
[B./Mehrmann/Xu ’97/’98, Chu/Liu/Mehrmann ’07]

Spectral projection methods

– Sign function method [Roberts ’71, Byers ’87]

– Disk function method [Bai/Demmel/Gu ’94, B. ’97]

(rational, global) Krylov subspace techniques
[Jaimoukha/Kasenally ’94, Jbilou ’03/’06, Heyouni/Jbilou ’09]

Newton’s method

– Kleinman iteration [Kleinman ’68]

– Line search acceleration [B./Byers ’98]

– Newton-ADI [B./J.-R. Li/Penzl ’99/’08]

– Inexact Newton
[Feitzinger/Hylla/Sachs ’09,B./Heinkenschloss/Saak/Weichelt ’15]
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Solving Large-Scale Matrix Equations
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.
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Solving Large-Scale Matrix Equations
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers
[B./Köhler/Saak ’08–]

Extended and revised version of Lyapack.

Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).

Many algorithmic improvements:

– new ADI parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix,
– new ADI versions avoiding complex arithmetic etc.

C and MATLAB versions.
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Topics Not Covered

Special methods for second-order (mechanical) systems.

Extensions to bilinear and stochastic systems.

Balanced truncation for discrete-time systems.

Extensions to descriptor systems Eẋ = Ax + Bu, E singular.

Frequency-limited/-weighted balanced truncation.

Application to parametric model reduction:

ẋ = A(p)x + B(p)u, y = C (p)x ,

where p ∈ Rd is a free parameter vector; parameters should be
preserved in the reduced-order model.
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Further Reading — Balanced Truncation
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Further Reading — Matrix Equations

1 V. Mehrmann.
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Computational methods for linear-quadratic optimization
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Lyapack Users Guide.
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Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.
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Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art
survey.
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9 V. Simoncini.
Computational methods for linear matrix equations (survey article).
March 2013.
http://www.dm.unibo.it/~simoncin/matrixeq.pdf.
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