Model Order Reduction via System Balancing

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems
Computational Methods in Systems and Control Theory
Magdeburg, Germany
benner@mpi-magdeburg.mpg.de

Outline

Introduction

- Model Reduction for Dynamical Systems
- Application Areas
- Motivating Examples

Mathematical Basics

- Numerical Linear Algebra
- Systems and Control Theory
- Qualitative and Quantitative Study of the Approximation Error

Model Reduction by Projection

- Introduction
- Projection-based MOR Methods

Modal Truncation

- Basic Principle
- Dominant Pole Algorithm
(5) Balanced Truncation
- The basic method
- Theoretical Background
- Singular Perturbation Approximation
- Balancing-Related Methods
(6) Solving Large-Scale Matrix Equations
- Linear Matrix Equations
- Numerical Methods for Solving Lyapunov Equations
- Solving Large-Scale Algebraic Riccati Equations
- Software

Outline

Introduction

- Model Reduction for Dynamical Systems
- Application Areas
- Motivating Examples
(2) Mathematical Basics
(3) Model Reduction by Projection
(4) Modal Truncation
(5) Balanced Truncation

6 Solving Large-Scale Matrix Equations
(7) Final Remarks

Dynamical Systems

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)), \quad x\left(t_{0}\right)=x_{0} \\
y(t)=g(t, x(t), u(t))
\end{array}\right.
$$

with

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Model Reduction for Dynamical Systems

Original System

$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$\widehat{\Sigma}:\left\{\begin{array}{l}\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t)) .\end{array}\right.$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$

Model Reduction for Dynamical Systems

Original System

$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$\widehat{\Sigma}:\left\{\begin{array}{l}\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t)) .\end{array}\right.$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$.

Model Reduction for Dynamical Systems

Original System

$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$\widehat{\Sigma}:\left\{\begin{array}{l}\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t)) .\end{array}\right.$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$.

Goal:

$\|y-\hat{y}\|<$ tolerance $\cdot\|u\|$ for all admissible input signals.

Model Reduction for Dynamical Systems

Original System

$\Sigma:\left\{\begin{array}{l}\dot{x}(t)=f(t, x(t), u(t)), \\ y(t)=g(t, x(t), u(t)) .\end{array}\right.$

- states $x(t) \in \mathbb{R}^{n}$,
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $y(t) \in \mathbb{R}^{q}$.

Reduced-Order Model (ROM)

$\widehat{\Sigma}:\left\{\begin{array}{l}\dot{\hat{x}}(t)=\widehat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t)=\widehat{g}(t, \hat{x}(t), u(t)) .\end{array}\right.$

- states $\hat{x}(t) \in \mathbb{R}^{r}, r \ll n$
- inputs $u(t) \in \mathbb{R}^{m}$,
- outputs $\hat{y}(t) \in \mathbb{R}^{q}$.

Goal:

$\|y-\hat{y}\|<$ tolerance $\cdot\|u\|$ for all admissible input signals.
Secondary goal: reconstruct approximation of x from \hat{x}.

Model Reduction for Dynamical Systems

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{lll}
\dot{x}=f(t, x, u)=A x+B u, \quad A \in \mathbb{R}^{n \times n}, & & B \in \mathbb{R}^{n \times m}, \\
y=g(t, x, u) & =C x+D u, & C \in \mathbb{R}^{q \times n},
\end{array}
$$

Application Areas

- Resolving complex 3D geometries \Rightarrow millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces, in particular if the model is used in an (elastic) multi-body simulation ((E)MBS).

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \rightsquigarrow Craig-Bampton method.

- Resolving complex 3D geometries \Rightarrow millions of degrees of freedom.
- Analysis of elastic deformations requires many simulation runs for varying external forces, in particular if the model is used in an (elastic) multi-body simulation ((E)MBS).

Standard MOR techniques in structural mechanics: modal truncation, combined with Guyan reduction (static condensation) \rightsquigarrow Craig-Bampton method.

Application Areas

(Optimal) Control

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$.

Practical controllers require small $N(N \sim 10$, say $)$ due to

- real-time constraints,
- increasing fragility for larger N.
\Longrightarrow reduce order of plant (n) and/or controller (N).
Standard MOR techniques in systems and control: balanced truncation and related methods.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$.

Practical controllers require small $N(N \sim 10$, say $)$ due to

- real-time constraints,
- increasing fragility for larger N.
\Longrightarrow reduce order of plant (n) and/or controller (N).
Standard MOR techniques in systems and control: balanced truncation and related methods.

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2^{-}} / \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$.

Practical controllers require small $N(N \sim 10$, say $)$ due to

- real-time constraints,
- increasing fragility for larger N.
\Longrightarrow reduce order of plant (n) and/or controller (N).
Standard MOR techniques in systems and control: balanced truncation and related methods.

Application Areas

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input $=$ output of plant,
- output $=$ input of plant.

Modern (LQG-/ $\mathcal{H}_{2}-/ \mathcal{H}_{\infty^{-}}$) control
 design: $N \geq n$.

Practical controllers require small $N(N \sim 10$, say $)$ due to

- real-time constraints,
- increasing fragility for larger N.
\Longrightarrow reduce order of plant (n) and/or controller (N).
Standard MOR techniques in systems and control: balanced truncation and related methods.

Application Areas

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) states that the number of on-chip transistors doubles each 24 months.

[^0]
Application Areas

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore’s Law (1965/75) \rightsquigarrow steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.

Application Areas

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore’s Law (1965/75) \rightsquigarrow steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

Intel 4004 (1971)	Intel Core 2 Extreme (quad-core) (2007)
1 layer, 10μ technology	9 layers, 45 nm technology
2,300 transistors	$>8,200,000$ transistors
64 kHz clock speed	$>3 \mathrm{GHz}$ clock speed.

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law $(\mathbf{1 9 6 5} / 75) \rightsquigarrow$ steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Increase in packing density and multilayer technology requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.

Application Areas

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) \rightsquigarrow steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
- Here: mostly MOR for linear systems, they occur in micro electronics through modified nodal analysis (MNA) for RLC networks. e.g., when
- decoupling large linear subcircuits,
- modeling transmission lines,
- modeling pin packages in VLSI chips,
- modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) \rightsquigarrow steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
\rightsquigarrow Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Application Areas

Micro Electronics/Circuit Simulation

Progressive miniaturization

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Moore's Law (1965/75) \rightsquigarrow steady increase of describing equations, i.e., network topology (Kirchhoff's laws) and characteristic element/semiconductor equations.
\rightsquigarrow Clear need for model reduction techniques in order to facilitate or even enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation: Krylov subspace / Padé approximation / rational interpolation methods.

Application Areas

Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- Current trend: more and more multi-physics problems, i.e., coupling of several field equations, e.g.,
- electro-thermal (e.g., bondwire heating in chip design),
- fluid-structure-interaction,

Peter Benner and Lihong Feng.

Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf.

Application Areas

Many other disciplines in computational sciences and engineering like

- computational fluid dynamics (CFD),
- computational electromagnetics,
- chemical process engineering,
- design of MEMS/NEMS (micro/nano-electrical-mechanical systems),
- computational acoustics,
- Current trend: more and more multi-physics problems, i.e., coupling of several field equations, e.g.,
- electro-thermal (e.g., bondwire heating in chip design),
- fluid-structure-interaction,
- . . .

Peter Benner and Lihong Feng.

Model Order Reduction for Coupled Problems
Applied and Computational Mathematics: An International Journal, 14(1):3-22, 2015.
Available from http://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-02.pdf.

Motivating Examples

Electro-Thermic Simulation of Integrated Circuit (IC)

- Simplorer ${ }^{\circledR}$ test circuit with 2 transistors.

- Conservative thermic sub-system in Simplorer: voltage \rightsquigarrow temperature, current \rightsquigarrow heat flow.
- Original model: $n=270.593, m=q=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Main computational cost for set-up data $\approx 22 \mathrm{~min}$.
- Computation of reduced models from set-up data: 44-49sec. ($r=20-70$).
- Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB): 7.5 h for original system,$<1 \mathrm{~min}$ for reduced system.

Motivating Examples
 Electro-Thermic Simulation of Integrated Circuit (IC)

- Original model: $n=270.593, m=q=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Main computational cost for set-up data $\approx 22 \mathrm{~min}$.
- Computation of reduced models from set-up data: 44-49sec. $(r=20-70)$.
- Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB): 7.5 h for original system,$<1 \mathrm{~min}$ for reduced system.

Bode Plot (Amplitude)

Motivating Examples

Electro-Thermic Simulation of Integrated Circuit (IC)

- Original model: $n=270.593, m=q=2 \Rightarrow$

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

- Main computational cost for set-up data $\approx 22 \mathrm{~min}$.
- Computation of reduced models from set-up data: 44-49sec. $(r=20-70)$.
- Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5 h for original system,$<1 \mathrm{~min}$ for reduced system.

Absolute Error

Relative Error

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

- Simple model for neuron (de-)activation
[Chaturantabut/Sorensen 2009]

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+g \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+g
\end{aligned}
$$

with $f(v)=v(v-0.1)(1-v)$ and initial and boundary conditions

$$
\begin{array}{llr}
v(x, 0)=0, & w(x, 0)=0, & x \in[0,1] \\
v_{x}(0, t)=-i_{0}(t), & v_{x}(1, t)=0, & t \geq 0,
\end{array}
$$

where $\epsilon=0.015, h=0.5, \gamma=2, g=0.05, i_{0}(t)=50000 t^{3} \exp (-15 t)$.

Source: http://en.wikipedia.org/wiki/Neuron

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

- Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

$$
\begin{aligned}
\epsilon v_{t}(x, t) & =\epsilon^{2} v_{x x}(x, t)+f(v(x, t))-w(x, t)+g, \\
w_{t}(x, t) & =h v(x, t)-\gamma w(x, t)+g,
\end{aligned}
$$

with $f(v)=v(v-0.1)(1-v)$ and initial and boundary conditions

$$
\begin{array}{llr}
v(x, 0)=0, & w(x, 0)=0, & x \in[0,1] \\
v_{x}(0, t)=-i_{0}(t), & v_{x}(1, t)=0, & t \geq 0,
\end{array}
$$

where $\epsilon=0.015, h=0.5, \gamma=2, g=0.05, i_{0}(t)=50000 t^{3} \exp (-15 t)$.

- Parameter g handled as an additional input.
- Original state dimension $n=2 \cdot 400$, QBDAE dimension $N=3 \cdot 400$, reduced QBDAE dimension $r=26$, chosen expansion point $\sigma=1$.

Motivating Examples

A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Phase Space Diagram, $n=2 \cdot 400, r=26$

Outline

Introduction

Mathematical Basics

- Numerical Linear Algebra
- Systems and Control Theory
- Qualitative and Quantitative Study of the Approximation Error
(3) Model Reduction by Projection

4 Modal Truncation
(5) Balanced Truncation
(6) Solving Large-Scale Matrix Equations
(7) Final Remarks

Numerical Linear Algebra
 Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

```
Theorem (Schmidt-Mirsky/Eckart-Young)
```



```
\widehat{x}=\mp@subsup{\sum}{j=1}{r}\mp@subsup{\sigma}{j}{}\mp@subsup{u}{j}{}\mp@subsup{v}{j}{\top},
where }X=U\Sigma\mp@subsup{V}{}{\top}\mathrm{ is the singular value decomposition (SVD) of X.
```


Idea for dimension reduction

```
Instead of }X\mathrm{ save }\mp@subsup{u}{1}{
ur},\mp@subsup{\sigma}{1}{}\mp@subsup{v}{1}{},\ldots,\mp@subsup{\sigma}{r}{}\mp@subsup{v}{r}{
```

\leadsto memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Numerical Linear Algebra

Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_{x} \times n_{y}}$ w.r.t. spectral norm:

$$
\widehat{X}=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}
$$

where $X=U \Sigma V^{\top}$ is the singular value decomposition (SVD) of X. The approximation error is $\|X-\widehat{X}\|_{2}=\sigma_{r+1}$.

Idea for dimension reduction
Instead of X save $u_{1}, \ldots, u_{r}, \sigma_{1} v_{1}, \ldots, \sigma_{r} v_{r}$.
\rightsquigarrow memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Numerical Linear Algebra

Image Compression by Truncated SVD

- A digital image with $n_{x} \times n_{y}$ pixels can be represented as matrix $X \in \mathbb{R}^{n_{x} \times n_{y}}$, where $x_{i j}$ contains color information of pixel (i, j).
- Memory (in single precision): $4 \cdot n_{x} \cdot n_{y}$ bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_{x} \times n_{y}}$ w.r.t. spectral norm:

$$
\widehat{X}=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}
$$

where $X=U \Sigma V^{\top}$ is the singular value decomposition (SVD) of X. The approximation error is $\|X-\widehat{X}\|_{2}=\sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_{1}, \ldots, u_{r}, \sigma_{1} v_{1}, \ldots, \sigma_{r} v_{r}$.
\rightsquigarrow memory $=4 r \times\left(n_{x}+n_{y}\right)$ bytes.

Example: Image Compression by Truncated SVD

Example: Clown

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

Example: Image Compression by Truncated SVD

Example: Clown

- rank $r=50, \approx 104 \mathrm{kB}$

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

Example: Image Compression by Truncated SVD

Example: Clown

$$
\begin{gathered}
320 \times 200 \text { pixel } \\
\rightsquigarrow \quad \approx 256 \mathrm{kB}
\end{gathered}
$$

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

640×480 pixel, ≈ 1229 kB

Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

640×480 pixel, $\approx 1229 \mathrm{kB}$

- rank $r=100, \approx 448 \mathrm{kB}$

- rank $r=50, \approx 224 \mathrm{kB}$

Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay (exponentially).

Singular Values of the Image Data Matrices

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

A different viewpoint

Linear Mapping

A matrix $A \in \mathbb{R}^{\ell \times k}$ represents a linear mapping

$$
\mathcal{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}: x \rightarrow y:=A x .
$$

The truncated SVD ignores small singular values and thus the related left and right singular vectors.

Consequence:

- Vectors (almost) in the kernel of A do not contribute to range (A) and can hardly or not at all be reconstructed from the input-output relation (" $A^{-1 "}$) \rightsquigarrow "unobservable" states.
- Vectors (almost) in range $(A)^{\perp}$ cannot be "reached" from any $x \in \mathbb{R}^{k} \rightsquigarrow$ "unreachable/uncontrollable" states.
- Hence, the truncated SVD ignores states hard to reconstruct and hard to reach.

Systems and Control Theory

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C} .
$$

F is a function in the (Laplace or) frequency domain.
Note: for frequency domain evaluations ("frequency response analysis"), one takes re $s=0$ and $\mathrm{im} s \geq 0$. Then $\omega:=\mathrm{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2 \pi v$ with v measured in $[\mathrm{Hz}]$).

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C} .
$$

F is a function in the (Laplace or) frequency domain.
Note: for frequency domain evaluations ("frequency response analysis"), one takes re $s=0$ and $\operatorname{im} s \geq 0$. Then $\omega:=\operatorname{im} s$ takes the role of a frequency (in [rad/s], i.e., $\omega=2 \pi v$ with v measured in $[\mathrm{Hz}]$).

Lemma

$$
\mathcal{L}\{\dot{f}(t)\}(s)=s F(s)-f(0)
$$

Systems and Control Theory

Definition

The Laplace transform of a time domain function $f \in L_{1, \text { loc }}$ with $\operatorname{dom}(f)=\mathbb{R}_{0}^{+}$is

$$
\mathcal{L}: f \mapsto F, \quad F(s):=\mathcal{L}\{f(t)\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t, \quad s \in \mathbb{C} .
$$

F is a function in the (Laplace or) frequency domain.

Lemma

$$
\mathcal{L}\{\dot{f}(t)\}(s)=s F(s)-f(0) .
$$

Note: for ease of notation, in the following we will use lower-case letters for both, a function and its Laplace transform!

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

\Longrightarrow I/O-relation in frequency domain:

$$
y(s)=(\underbrace{C\left(s I_{n}-A\right)^{-1} B+D}_{=: G(s)}) u(s)
$$

$G(s)$ is the transfer function of Σ.

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform $\quad(x(t) \mapsto x(s), \dot{x}(t) \mapsto s x(s))$ to linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(0)=0$ yields:

$$
s x(s)=A x(s)+B u(s), \quad y(s)=C x(s)+D u(s)
$$

$\Longrightarrow \mathrm{I} / \mathrm{O}$-relation in frequency domain:

$$
y(s)=(\underbrace{C\left(s I_{n}-A\right)^{-1} B+D}_{=: G(s)}) u(s) .
$$

$G(s)$ is the transfer function of Σ.
Goal: Fast evaluation of mapping $u \rightarrow y$.

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$
\begin{array}{ll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

by reduced-order system

$$
\begin{aligned}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\
& \hat{y}=\hat{C} \hat{x}+\hat{D} u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\| .
$$

Systems and Control Theory

The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

$$
\begin{array}{ll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}
\end{array}
$$

by reduced-order system

$$
\begin{aligned}
& \dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\
& \hat{y}=\hat{C} \hat{x}+\hat{D} u, \quad \hat{C} \in \mathbb{R}^{q \times r}, \quad \hat{D} \in \mathbb{R}^{q \times m}
\end{aligned}
$$

of order $r \ll n$, such that

$$
\|y-\hat{y}\|=\|G u-\hat{G} u\| \leq\|G-\hat{G}\| \cdot\|u\|<\text { tolerance } \cdot\|u\|
$$

\Longrightarrow Approximation problem:

$$
\min _{\operatorname{order}(\hat{G}) \leq r}\|G-\hat{G}\| .
$$

Definition

A linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

is stable if its transfer function $G(s)$ has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re(z)<0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of A, denoted by $\Lambda(A)$, satisfies $\Lambda(A) \subset \mathbb{C}^{-}$

Note that by abuse of notation, often stable system is used for asymptotically stable systems.

Systems and Control Theory

 Properties of linear systems
Definition

A linear system

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

is stable if its transfer function $G(s)$ has all its poles in the left half plane and it is asymptotically (or Lyapunov or exponentially) stable if all poles are in the open left half plane $\mathbb{C}^{-}:=\{z \in \mathbb{C} \mid \Re(z)<0\}$.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or Hurwitz), i.e., the spectrum of A, denoted by $\Lambda(A)$, satisfies $\Lambda(A) \subset \mathbb{C}^{-}$.

Note that by abuse of notation, often stable system is used for asymptotically stable systems.

Systems and Control Theory

Properties of linear systems

Questions:

- For fixed $x_{0} \in \mathbb{R}^{n}$ and some $x^{1} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$?
What is the set of targets x^{1} reachable from x^{0} ?
- For fixed $x_{1} \in \mathbb{R}^{n}$ and some $x^{0} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$? What is the set of initial conditions x^{0} controllable to x^{1} ?
E.g., $\mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\}$, possibly with constraints $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$.

Systems and Control Theory

Properties of linear systems

Questions:

- For fixed $x_{0} \in \mathbb{R}^{n}$ and some $x^{1} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$?
What is the set of targets x^{1} reachable from x^{0} ?
- For fixed $x_{1} \in \mathbb{R}^{n}$ and some $x^{0} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$? What is the set of initial conditions x^{0} controllable to x^{1} ?
E.g., $\mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\}$, possibly with constraints $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$.

Systems and Control Theory

 Properties of linear systems
Questions:

- For fixed $x_{0} \in \mathbb{R}^{n}$ and some $x^{1} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$?
What is the set of targets x^{1} reachable from x^{0} ?
- For fixed $x_{1} \in \mathbb{R}^{n}$ and some $x^{0} \in \mathbb{R}^{n}$, is there a feasible control function $u \in \mathcal{U}_{a d}$ and time $t_{1}>t_{0}=0$ such that $x\left(t_{1} ; u\right)=x^{1}$? What is the set of initial conditions x^{0} controllable to x^{1} ?

Note: for LTI systems $\dot{x}=A x+B u$, both concepts are equivalent! E.g., $\mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\}$, possibly with constraints $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$.

Systems and Control Theory

 Properties of linear systems
Definition (Controllability)

Consider the target (the state to be reached) $x^{1} \in \mathbb{R}^{n}$.
a) An LTI system with initial value $x(0)=x^{0}$ is controllable to x^{1} in time $t_{1}>0$ if there exists $u \in \mathcal{U}_{a d}$ such that $x\left(t_{1} ; u\right)=x^{1}$.
(Equivalently, $\left(t_{1}, x^{1}\right)$ is reachable from $\left(0, x^{0}\right)$.)
b) x^{0} is controllable to x^{1} if there exists a $t_{1}>0$ such that $\left(t_{1}, x^{1}\right)$ can be reached from $\left(0, x^{0}\right)$.
c) If the system is controllable to x^{1} for all $x^{0} \in \mathbb{R}^{n}$, it is (completely) controllable.

The controllability set w.r.t. x^{1} is defined as $\mathcal{C}:=\bigcup_{t_{1}>0} \mathcal{C}\left(t_{1}\right)$ where

$$
\mathcal{C}\left(t_{1}\right):=\left\{x^{0} \in \mathbb{R}^{n} ; \exists u \in \mathcal{U}_{a d}: x\left(t_{1} ; u\right)=x^{1}\right\} .
$$

In short: an LTI system is controllable $\Longleftrightarrow \mathcal{C}=\mathbb{R}^{n}$
E.g., $\mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\}$, possibly with constraints $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$.

Systems and Control Theory

 Properties of linear systems
Definition (Controllability)

Consider the target (the state to be reached) $x^{1} \in \mathbb{R}^{n}$.
a) An LTI system with initial value $x(0)=x^{0}$ is controllable to x^{1} in time $t_{1}>0$ if there exists $u \in \mathcal{U}_{a d}$ such that $x\left(t_{1} ; u\right)=x^{1}$.
(Equivalently, $\left(t_{1}, x^{1}\right)$ is reachable from $\left(0, x^{0}\right)$.)
b) x^{0} is controllable to x^{1} if there exists a $t_{1}>0$ such that $\left(t_{1}, x^{1}\right)$ can be reached from $\left(0, x^{0}\right)$.
c) If the system is controllable to x^{1} for all $x^{0} \in \mathbb{R}^{n}$, it is (completely) controllable.

The controllability set w.r.t. x^{1} is defined as $\mathcal{C}:=\bigcup_{t_{1}>0} C\left(t_{1}\right)$ where

$$
\mathcal{C}\left(t_{1}\right):=\left\{x^{0} \in \mathbb{R}^{n} ; \exists u \in \mathcal{U}_{a d}: x\left(t_{1} ; u\right)=x^{1}\right\} .
$$

In short: an LTI system is controllable $\Longleftrightarrow C=\mathbb{R}^{n}$

$$
\text { E.g., } \mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\} \text {, possibly with constraints } \underline{u}(t) \leq u(t) \leq \bar{u}(t) .
$$

Systems and Control Theory

 Properties of linear systems
Definition (Controllability)

Consider the target (the state to be reached) $x^{1} \in \mathbb{R}^{n}$.
a) An LTI system with initial value $x(0)=x^{0}$ is controllable to x^{1} in time $t_{1}>0$ if there exists $u \in \mathcal{U}_{a d}$ such that $x\left(t_{1} ; u\right)=x^{1}$.
(Equivalently, $\left(t_{1}, x^{1}\right)$ is reachable from $\left(0, x^{0}\right)$.)
b) x^{0} is controllable to x^{1} if there exists a $t_{1}>0$ such that $\left(t_{1}, x^{1}\right)$ can be reached from $\left(0, x^{0}\right)$.
c) If the system is controllable to x^{1} for all $x^{0} \in \mathbb{R}^{n}$, it is (completely) controllable.

The controllability set w.r.t. x^{1} is defined as $\mathcal{C}:=\bigcup_{t_{1}>0} \mathcal{C}\left(t_{1}\right)$ where

$$
\mathcal{C}\left(t_{1}\right):=\left\{x^{0} \in \mathbb{R}^{n} ; \exists u \in \mathcal{U}_{a d}: x\left(t_{1} ; u\right)=x^{1}\right\}
$$

In short: an LTI system is controllable $\Longleftrightarrow C=\mathbb{R}^{n}$

$$
\text { E.g., } \mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\} \text {, possibly with constraints } \underline{u}(t) \leq u(t) \leq \bar{u}(t) .
$$

Systems and Control Theory

 Properties of linear systems
Definition (Controllability)

Consider the target (the state to be reached) $x^{1} \in \mathbb{R}^{n}$.
a) An LTI system with initial value $x(0)=x^{0}$ is controllable to x^{1} in time $t_{1}>0$ if there exists $u \in \mathcal{U}_{a d}$ such that $x\left(t_{1} ; u\right)=x^{1}$.
(Equivalently, $\left(t_{1}, x^{1}\right)$ is reachable from $\left(0, x^{0}\right)$.)
b) x^{0} is controllable to x^{1} if there exists a $t_{1}>0$ such that $\left(t_{1}, x^{1}\right)$ can be reached from $\left(0, x^{0}\right)$.
c) If the system is controllable to x^{1} for all $x^{0} \in \mathbb{R}^{n}$, it is (completely) controllable.
The controllability set w.r.t. x^{1} is defined as $\mathcal{C}:=\bigcup_{t_{1}>0} \mathcal{C}\left(t_{1}\right)$ where

$$
\mathcal{C}\left(t_{1}\right):=\left\{x^{0} \in \mathbb{R}^{n} ; \exists u \in \mathcal{U}_{a d}: x\left(t_{1} ; u\right)=x^{1}\right\}
$$

In short: an LTI system is controllable $\Longleftrightarrow \mathcal{C}=\mathbb{R}^{n}$

$$
\text { E.g., } \mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\} \text {, possibly with constraints } \underline{u}(t) \leq u(t) \leq \bar{u}(t) .
$$

Systems and Control Theory

 Properties of linear systems
Definition (Controllability)

Consider the target (the state to be reached) $x^{1} \in \mathbb{R}^{n}$.
a) An LTI system with initial value $x(0)=x^{0}$ is controllable to x^{1} in time $t_{1}>0$ if there exists $u \in \mathcal{U}_{a d}$ such that $x\left(t_{1} ; u\right)=x^{1}$.
(Equivalently, $\left(t_{1}, x^{1}\right)$ is reachable from $\left(0, x^{0}\right)$.)
b) x^{0} is controllable to x^{1} if there exists a $t_{1}>0$ such that $\left(t_{1}, x^{1}\right)$ can be reached from $\left(0, x^{0}\right)$.
c) If the system is controllable to x^{1} for all $x^{0} \in \mathbb{R}^{n}$, it is (completely) controllable.
The controllability set w.r.t. x^{1} is defined as $\mathcal{C}:=\bigcup_{t_{1}>0} \mathcal{C}\left(t_{1}\right)$ where

$$
\mathcal{C}\left(t_{1}\right):=\left\{x^{0} \in \mathbb{R}^{n} ; \exists u \in \mathcal{U}_{a d}: x\left(t_{1} ; u\right)=x^{1}\right\}
$$

In short: an LTI system is controllable $\Longleftrightarrow \mathcal{C}=\mathbb{R}^{n}$.
E.g., $\mathcal{U}_{a d} \in\left\{C^{k}[0, T], L_{2}(0, T)\right\}$, possibly with constraints $\underline{u}(t) \leq u(t) \leq \bar{u}(t)$.

Systems and Control Theory
 Properties of linear systems

Now: characterize controllability.

Systems and Control Theory

Properties of linear systems
Now: characterize controllability.
Variation of constants \Longrightarrow

$$
x(t)=e^{A t} x^{0}+\int_{0}^{t} e^{A(t-s)} B u(s) d s=e^{A t}\left(x^{0}+\int_{0}^{t} e^{-A s} B u(s) d s\right) .
$$

Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
Variation of constants \Longrightarrow

$$
x(t)=e^{A t} x^{0}+\int_{0}^{t} e^{A(t-s)} B u(s) d s=e^{A t}\left(x^{0}+\int_{0}^{t} e^{-A s} B u(s) d s\right)
$$

Hence, if x^{0} is controllable to x^{1} :

$$
x^{1}=x\left(t_{1}\right)=e^{A t_{1}} x^{0}+\int_{0}^{t_{1}} e^{A\left(t_{1}-t\right)} B u(t) d t
$$

This is equivalent to

$$
e^{-A t_{1}} x^{1}-x^{0}=\int_{0}^{t_{1}} e^{-A t} B u(t) d t
$$

Systems and Control Theory

Properties of linear systems
Now: characterize controllability.
Variation of constants \Longrightarrow

$$
x(t)=e^{A t} x^{0}+\int_{0}^{t} e^{A(t-s)} B u(s) d s=e^{A t}\left(x^{0}+\int_{0}^{t} e^{-A s} B u(s) d s\right)
$$

Hence, if x^{0} is controllable to x^{1} :

$$
x^{1}=x\left(t_{1}\right)=e^{A t_{1}} x^{0}+\int_{0}^{t_{1}} e^{A\left(t_{1}-t\right)} B u(t) d t
$$

This is equivalent to

$$
e^{-A t_{1}} x^{1}-x^{0}=\int_{0}^{t_{1}} e^{-A t} B u(t) d t
$$

Ansatz: $u(t)=B^{T} e^{-A^{T} t} c \Longrightarrow$

$$
e^{-A t_{1}} x^{1}-x^{0}=\int_{0}^{t_{1}} e^{-A t} B B^{T} e^{-A^{T} t} d t c=: P\left(0, t_{1}\right) c
$$

Systems and Control Theory

Properties of linear systems

Now: characterize controllability.

Variation of constants \Longrightarrow

$$
x(t)=e^{A t} x^{0}+\int_{0}^{t} e^{A(t-s)} B u(s) d s=e^{A t}\left(x^{0}+\int_{0}^{t} e^{-A s} B u(s) d s\right)
$$

Hence, if x^{0} is controllable to x^{1} :

$$
x^{1}=x\left(t_{1}\right)=e^{A t_{1}} x^{0}+\int_{0}^{t_{1}} e^{A\left(t_{1}-t\right)} B u(t) d t
$$

This is equivalent to

$$
e^{-A t_{1}} x^{1}-x^{0}=\int_{0}^{t_{1}} e^{-A t} B u(t) d t
$$

Ansatz: $u(t)=B^{T} e^{-A^{T} t} c \Longrightarrow$

$$
e^{-A t_{1}} x^{1}-x^{0}=\int_{0}^{t_{1}} e^{-A t} B B^{T} e^{-A^{T} t} d t c=: P\left(0, t_{1}\right) c
$$

Hence, an LTI system is controllable iff this linear system is solvable for $c \in \mathbb{R}^{n}$, i.e., iff $P\left(0, t_{1}\right)$ is invertible. (Note: $P\left(0, t_{1}\right)=P\left(0, t_{1}\right)^{T} \geq 0$ by definition!)

Systems and Control Theory

 Properties of linear systems
Now: characterize controllability.

Theorem

For an LTI system defined by $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, T.F.A.E.:
a) The LTI system $\dot{x}=A x+B u$ is controllable.
b) The finite time Gramian $P\left(0, t_{1}\right)$ is spd $\forall t_{1}>0$.
c) The controllability matrix

$$
K(A, B):=\left[B, A B, A^{2} B, \ldots, A^{n-1} B\right] \in \mathbb{R}^{n \times n \cdot m}
$$

has full rank n. (Note: range $(K(A, B))=\mathcal{C}\left(t_{1}\right) \forall t_{1}>0$!)
d) If z is a left eigenvector of A, then $z^{*} B \neq 0$.
e) (Hautus test) $\operatorname{rank}([\lambda I-A, B])=n \forall \lambda \in \mathbb{C}$.

Systems and Control Theory

Properties of linear systems
The Gramian characterization of controllability for stable systems can be based on positive definiteness of the (infinite) controllability Gramian

$$
P:=\int_{0}^{\infty} e^{A s} B B^{T} e^{A^{T} s} d s
$$

using congruence of $P\left(0, t_{1}\right)$ to $\int_{0}^{t_{1}} e^{A_{s}} B B^{T} e^{A^{T} s} d s$ and taking the limit $t_{1} \rightarrow \infty$.

Systems and Control Theory

 Properties of linear systemsThe Gramian characterization of controllability for stable systems can be based on positive definiteness of the (infinite) controllability Gramian

$$
P:=\int_{0}^{\infty} e^{A s} B B^{T} e^{A^{T} s} d s
$$

using congruence of $P\left(0, t_{1}\right)$ to $\int_{0}^{t_{1}} e^{A_{s}} B B^{T} e^{A^{T} s} d s$ and taking the limit $t_{1} \rightarrow \infty$.

Theorem

For a stable LTI system defined by $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, T.F.A.E.:
a) The LTI system $\dot{x}=A x+B u$ is controllable.
b) The controllability Gramian P is positive definite.

Systems and Control Theory

Properties of linear systems
New question: suppose we have

$$
y(t)=\tilde{y}(t)
$$

corresponding to two trajectories x, \tilde{x} obtained by the same input function $u(t)$. Can we conclude that $x(0)=\tilde{x}(0)$, or even stronger, that $x(t)=\tilde{x}(t)$ for $t \leq 0, t \geq 0$ (past/future)?
(Note that $x\left(t_{0}\right)=\tilde{x}\left(t_{0}\right)$ is sufficient as trajectory uniquely determined. In other words, is the mapping $x^{0} \rightarrow y(t)$ injective?)

Systems and Control Theory

 Properties of linear systemsNew question: suppose we have

$$
y(t)=\tilde{y}(t)
$$

corresponding to two trajectories x, \tilde{x} obtained by the same input function $u(t)$. Can we conclude that $x(0)=\tilde{x}(0)$, or even stronger, that $x(t)=\tilde{x}(t)$ for $t \leq 0, t \geq 0$ (past/future)?
(Note that $x\left(t_{0}\right)=\tilde{x}\left(t_{0}\right)$ is sufficient as trajectory uniquely determined. In other words, is the mapping $x^{0} \rightarrow y(t)$ injective?)

Definition (Observability)

An LTI system is reconstructable (observable) if for solution trajectories $x(t), \tilde{x}(t)$ obtained with the same input function u, we have

$$
\begin{aligned}
y(t) & =\tilde{y}(t) \quad \forall t \leq 0 \quad(\forall t \geq 0) \\
\Longrightarrow \quad x(t) & =\tilde{x}(t) \quad \forall t \leq 0 \quad(\forall t \geq 0)
\end{aligned}
$$

Systems and Control Theory
 Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system $\dot{x}(t)=-A^{T} x(t)-C^{T} u(t)$ is controllable.

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system $\dot{x}(t)=-A^{T} x(t)-C^{T} u(t)$ is controllable.

Theorem

For an LTI system defined by $(A, C) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{q \times n}$, T.F.A.E.:
a) The LTI system is reconstructable.
b) The LTI system is observable.
c) The observability matrix

$$
\mathcal{O}(A, C)=\left[C^{T}, A^{T} C^{T},\left(A^{2}\right)^{T} C, \ldots,\left(A^{n-1}\right)^{T} C^{T}\right]^{T} \in \mathbb{R}^{n p \times n} \text { has rank } n
$$

d) If $A x=\lambda x$, then $C^{\top} x \neq 0$.
e) (Hautus test) $\operatorname{rank}\left[\begin{array}{c}\lambda I-A \\ C\end{array}\right]=n$.

Systems and Control Theory

Properties of linear systems
Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system $\dot{x}(t)=-A^{T} x(t)-C^{T} u(t)$ is controllable.

Theorem

A stable LTI system is observable if and only if the observability Gramian

$$
Q:=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t
$$

is symmetric positive definite.

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Systems and Control Theory

Properties of linear systems

- Controllability/observability are sometimes too strong.
- Weaker requirement: is there $u \in \mathcal{U}_{a d}$ to steer x_{0} to vicinity of x^{1} ?
- For LTI systems, it suffices to consider $x^{1}=0$!
- Hence, is there $u \in \mathcal{U}_{a d}$ so that $\lim _{t \rightarrow \infty} x(t ; u)=0\left(\forall x^{0} \in \mathbb{R}^{n}\right)$?
- If the answer is yes, then the LTI system is called stabilizable

Theorem

For an LTI system defined by $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, T.F.A.E.:
a) The LTI system is stabilizable.
b) $\exists F \in \mathbb{R}^{m \times n}$ with $\Lambda(A+B F) \subset \mathbb{C}^{-}$.
c) If $p^{*} A=\tilde{\lambda} p^{*}$ and $\operatorname{Re}(\lambda) \geq 0$, then $p^{*} B \neq 0$.
d) $\operatorname{rank}([A-\lambda I, B])=n \quad \forall \lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) \geq 0$.
e) In the (controllability) Kalman decomposition of (A, B),

$$
V^{T} A V=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right], V^{T} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

we have $\Lambda\left(A_{3}\right) \subset \mathbb{C}^{-}$.

Systems and Control Theory Properties of linear systems

\exists dual concept of stabilizability, analogous to duality of controllability and observability.

Definition (Detectability)

An LTI system is detectable if for any solution $x(t)$ of $\dot{x}=A x$ with $C x(t) \equiv 0$ we have $\lim _{t \rightarrow \infty} x(t)=0$. (We can not observe all of x, but the unobservable part is stable.)

Systems and Control Theory

Properties of linear systems
\exists dual concept of stabilizability, analogous to duality of controllability and observability.

Theorem

For an LTI system defined by $(A, C) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{q \times n}$, T.F.A.E.:
a) The LTI system is detectable.
b) $\left(A^{T}, C^{T}\right)$ is stabilizable.
c) $A x=\lambda x, \operatorname{Re}(\lambda) \geq 0 \Rightarrow C^{T} x \neq 0$.
d) $\operatorname{rank}\left[\begin{array}{c}\lambda I-A \\ C\end{array}\right]=n$ for all $\lambda, \operatorname{Re}(\lambda) \geq 0$.
e) In the observability Kalman decomposition of $\left(A^{T}, C^{\top}\right)$,

$$
W^{T} A W=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right], C W=\left[\begin{array}{ll}
C_{1} & 0
\end{array}\right]
$$

we have $\Lambda\left(A_{3}\right) \subset \mathbb{C}^{-}$.

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t)=A x(t)+B u(t), & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & G(s)=C(s l-A)^{-1} B+D,
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t)=A x(t)+B u(t), & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & G(s)=C(s l-A)^{-1} B+D,
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Transfer function is invariant under state-space transformations,

$$
\mathcal{T}:\left\{\begin{array}{ccc}
x & \rightarrow & T x, \\
(A, B, C, D) & \rightarrow & \left(T A T^{-1}, T B, C T^{-1}, D\right),
\end{array}\right.
$$

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{array}{lll}
\dot{x}(t)=A x(t)+B u(t), & & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{array}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right] & =\left[\begin{array}{cc}
A & 0 \\
0 & A_{1}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
B \\
B_{1}
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
C & 0
\end{array}\right]\left[\begin{array}{c}
x \\
x_{1}
\end{array}\right]+D u(t), \\
\frac{d}{d t}\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right] & =\left[\begin{array}{cc}
A & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B \\
0
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
C & C_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
x_{2}
\end{array}\right]+D u(t),
\end{aligned}
$$

for arbitrary $A_{j} \in \mathbb{R}^{n_{j} \times n_{j}}, j=1,2, B_{1} \in \mathbb{R}^{n_{1} \times m}, C_{2} \in \mathbb{R}^{q \times n_{2}}$ and any $n_{1}, n_{2} \in \mathbb{N}$.

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t)=A x(t)+B u(t), & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & G(s)=C(s l-A)^{-1} B+D,
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Realizations are not unique!

Hence,

$$
\begin{array}{ll}
(A, B, C, D), & \left(\left[\begin{array}{cc}
A & 0 \\
0 & A_{1}
\end{array}\right],\left[\begin{array}{c}
B \\
B_{1}
\end{array}\right],\left[\begin{array}{ll}
C & 0
\end{array}\right], D\right), \\
\left(T A T^{-1}, T B, C T^{-1}, D\right), & \left(\left[\begin{array}{cc}
A & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{c}
B \\
0
\end{array}\right],\left[\begin{array}{ll}
C & C_{2}
\end{array}\right], D\right),
\end{array}
$$

are all realizations of Σ !

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), & & \text { with transfer function } \\
y(t) & =C x(t)+D u(t), & & G(s)=C(s l-A)^{-1} B+D
\end{aligned}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely. A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n}.

Systems and Control Theory

Realizations of Linear Systems

Definition

For a linear (time-invariant) system

$$
\Sigma:\left\{\begin{array}{lll}
\dot{x}(t)=A x(t)+B u(t), & & \text { with transfer function } \\
y(t)=C x(t)+D u(t), & & G(s)=C(s I-A)^{-1} B+D
\end{array}\right.
$$

the quadruple $(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called a realization of Σ.

Definition

The McMillan degree of Σ is the unique minimal number $\hat{n} \geq 0$ of states necessary to describe the input-output behavior completely. A minimal realization is a realization $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ of Σ with order \hat{n}.

Theorem

A realization (A, B, C, D) of a linear system is minimal \Longleftrightarrow (A, B) is controllable and (A, C) is observable.

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad \text { (w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1 \text {). }
$$

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right) .
$$

When does a balanced realization exist?

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. $\Lambda(A) \subset \mathbb{C}^{-}$. Then:

Theorem

Given a stable minimal linear system $\Sigma:(A, B, C, D)$, a balanced realization is obtained by the state-space transformation with

$$
T_{b}:=\Sigma^{-\frac{1}{2}} V^{\top} R,
$$

where $P=S^{T} S, Q=R^{T} R$ (e.g., Cholesky decompositions) and $S R^{T}=U \Sigma V^{T}$ is the SVD of $S R^{T}$.

Proof. Easy.

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right) .
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Theorem

The infinite controllability/observability Gramians P / Q satisfy the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0 .
$$

Systems and Control Theory

Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Theorem

The infinite controllability/observability Gramians P / Q satisfy the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0 .
$$

Proof. Exercise!

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad\left(\text { w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are $\Lambda(P Q)^{\frac{1}{2}}$. Now let

$$
(\hat{A}, \hat{B}, \hat{C}, D)=\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

be any transformed realization with associated controllability Lyapunov equation

$$
0=\hat{A} \hat{P}+\hat{P} \hat{A}^{T}+\hat{B} \hat{B}^{T}=T A T^{-1} \hat{P}+\hat{P} T^{-T} A^{T} T^{T}+T B B^{T} T^{T} .
$$

This is equivalent to

$$
0=A\left(T^{-1} \hat{P} T^{-T}\right)+\left(T^{-1} \hat{P} T^{-T}\right) A^{T}+B B^{T}
$$

The uniqueness of the solution of the Lyapunov equation implies that $\hat{P}=T P T^{T}$ and, analogously, $\hat{Q}=T^{-T} Q T^{-1}$. Therefore,

$$
\hat{P} \hat{Q}=T P Q T^{-1}
$$

showing that $\Lambda(\hat{P} \hat{Q})=\Lambda(P Q)=\left\{\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right\}$.

Systems and Control Theory Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system Σ is balanced if its infinite controllability/observability Gramians P / Q satisfy

$$
\left.P=Q=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \quad \text { (w.l.o.g. } \sigma_{j} \geq \sigma_{j+1}, j=1, \ldots, n-1\right)
$$

$\sigma_{1}, \ldots, \sigma_{n}$ are the Hankel singular values of Σ.
Note: $\sigma_{1}, \ldots, \sigma_{n} \geq 0$ as $P, Q \geq 0$ by definition, and $\sigma_{1}, \ldots, \sigma_{n}>0$ in case of minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading $\hat{n} \times \hat{n}$ submatrices equal to $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\hat{n}}\right)$, and

$$
\hat{P} \hat{Q}=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{\hat{n}}^{2}, 0, \ldots, 0\right)
$$

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$.

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega=\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega
$$

(Here, $\|\cdot\|$ denotes the Euclidian vector or spectral matrix norm.)

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega
\end{aligned}
$$

(Here, $\|$.$\| denotes the Euclidian vector or spectral matrix norm.)$

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega \\
& =M^{2} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega<\infty .
\end{aligned}
$$

(Here, $\|$.$\| denotes the Euclidian vector or spectral matrix norm.)$

Qualitative and Quantitative Study of the Approximation Error

System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Then for all $s \in \mathbb{C}^{+} \cup \jmath \mathbb{R},\|G(s)\| \leq M<\infty \Rightarrow$

$$
\begin{aligned}
\int_{-\infty}^{\infty} y(\jmath \omega)^{H} y(\jmath \omega) d \omega & =\int_{-\infty}^{\infty} u(\jmath \omega)^{H} G(\jmath \omega)^{H} G(\jmath \omega) u(\jmath \omega) d \omega \\
& =\int_{-\infty}^{\infty}\|G(\jmath \omega) u(\jmath \omega)\|^{2} d \omega \leq \int_{-\infty}^{\infty} M^{2}\|u(\jmath \omega)\|^{2} d \omega \\
& =M^{2} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega<\infty
\end{aligned}
$$

$$
\Longrightarrow y \in \mathcal{L}_{2}^{q} \cong L_{2}^{q}(-\infty, \infty)
$$

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega .
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Consequently, the 2-induced operator norm

$$
\|G\|_{\infty}:=\sup _{\|u\|_{2} \neq 0} \frac{\|G u\|_{2}}{\|u\|_{2}}
$$

is well defined. It can be shown that

$$
\|G\|_{\infty}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\jmath \omega)) .
$$

Qualitative and Quantitative Study of the Approximation Error

System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

and input functions $u \in \mathcal{L}_{2}^{m} \cong L_{2}^{m}(-\infty, \infty)$, with the L_{2}-norm

$$
\|u\|_{2}^{2}:=\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(\jmath \omega)^{H} u(\jmath \omega) d \omega
$$

Assume A (asympotically) stable: $\Lambda(A) \subset \mathbb{C}^{-}:=\{z \in \mathbb{C}:$ re $z<0\}$. Consequently, the 2-induced operator norm

$$
\|G\|_{\infty}:=\sup _{\|u\|_{2} \neq 0} \frac{\|G u\|_{2}}{\|u\|_{2}}
$$

is well defined. It can be shown that

$$
\|G\|_{\infty}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\jmath \omega))
$$

Sketch of proof:
$\|G(\jmath \omega) u(\jmath \omega)\| \leq\|G(\jmath \omega)\|\|u(\jmath \omega)\| \Rightarrow " \leq "$.
Construct u with $\|G u\|_{2}=\sup _{\omega \in \mathbb{R}}\|G(\jmath \omega)\|\|u\|_{2}$.

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider transfer function

$$
G(s)=C(s l-A)^{-1} B+D
$$

Hardy space \mathcal{H}_{∞}

Function space of matrix-/scalar-valued functions that are analytic and bounded in \mathbb{C}^{+}.
The \mathcal{H}_{∞}-norm is

$$
\|F\|_{\infty}:=\sup _{\text {res>0 }} \sigma_{\max }(F(s))=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(F(\jmath \omega))
$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_{∞} in the SISO case (single-input, single-output, $m=q=1$);
- $\mathcal{H}_{\infty}^{q \times m}$ in the MIMO case (multi-input, multi-output, $m>1, q>1$). System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D .
$$

Consequence of Parseval identity/Plancherel Theorem

$$
L_{2}(-\infty, \infty) \cong \mathcal{L}_{2}, \quad L_{2}(0, \infty) \cong \mathcal{H}_{2}
$$

Consequently, 2-norms in time and frequency domains coincide!

Qualitative and Quantitative Study of the Approximation Error System Norms

Consider transfer function

$$
G(s)=C(s l-A)^{-1} B+D .
$$

Consequence of Parseval identity/Plancherel Theorem

$$
L_{2}(-\infty, \infty) \cong \mathcal{L}_{2}, \quad L_{2}(0, \infty) \cong \mathcal{H}_{2}
$$

Consequently, 2-norms in time and frequency domains coincide!

\mathcal{H}_{∞} approximation error

Reduced-order model \Rightarrow transfer function $\hat{G}(s)=\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}+\hat{D}$.

$$
\|y-\hat{y}\|_{2}=\|G u-\hat{G} u\|_{2} \leq\|G-\hat{G}\|_{\infty}\|u\|_{2} .
$$

\Longrightarrow compute reduced-order model such that $\|G-\hat{G}\|_{\infty}<$ tol!
Note: error bound holds in time- and frequency domain due to Plancherel!

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider stable transfer function

$$
G(s)=C(s I-A)^{-1} B, \quad \text { i.e. } D=0 .
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\begin{aligned}
\|F\|_{2} & :=\frac{1}{2 \pi}\left(\sup _{\operatorname{re\sigma } \sigma 0} \int_{-\infty}^{\infty}\|F(\sigma+\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}} \\
& =\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}}
\end{aligned}
$$

Stable transfer functions are in the Hardy spaces

- \mathcal{H}_{2} in the SISO case (single-input, single-output, $m=q=1$);
- $\mathcal{H}_{2}^{q \times m}$ in the MIMO case (multi-input, multi-output, $m>1, q>1$).

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider stable transfer function

$$
G(s)=C(s l-A)^{-1} B, \quad \text { i.e. } D=0 .
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\|F\|_{2}=\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}}
$$

\mathcal{H}_{2} approximation error for impulse response $\left(u(t)=u_{0} \delta(t)\right)$

Reduced-order model \Rightarrow transfer function $\hat{G}(s)=\hat{C}\left(s I_{r}-\hat{A}\right)^{-1} \hat{B}$.

$$
\|y-\hat{y}\|_{2}=\left\|G u_{0} \delta-\hat{G} u_{0} \delta\right\|_{2} \leq\|G-\hat{G}\|_{2}\left\|u_{0}\right\| .
$$

\Longrightarrow compute reduced-order model such that $\|G-\hat{G}\|_{2}<$ tol!

Qualitative and Quantitative Study of the Approximation Error

 System NormsConsider stable transfer function

$$
G(s)=C(s l-A)^{-1} B, \quad \text { i.e. } D=0
$$

Hardy space \mathcal{H}_{2}

Function space of matrix-/scalar-valued functions that are analytic \mathbb{C}^{+}and bounded w.r.t. the \mathcal{H}_{2}-norm

$$
\|F\|_{2}=\frac{1}{2 \pi}\left(\int_{-\infty}^{\infty}\|F(\jmath \omega)\|_{F}^{2} d \omega\right)^{\frac{1}{2}}
$$

Theorem (Practical Computation of the \mathcal{H}_{2}-norm)

$$
\|F\|_{2}^{2}=\operatorname{tr}\left(B^{\top} Q B\right)=\operatorname{tr}\left(C P C^{\top}\right),
$$

where P, Q are the controllability and observability Gramians of the corresponding LTI system.

Output errors in time-domain

$$
\begin{aligned}
\|y-\hat{y}\|_{2} & \leq\|G-\hat{G}\|_{\infty}\|u\|_{2}
\end{aligned} \quad \Longrightarrow\|G-\hat{G}\|_{\infty}<\text { tol }
$$

Qualitative and Quantitative Study of the Approximation Error Approximation Problems

Output errors in time-domain

$$
\begin{aligned}
\|y-\hat{y}\|_{2} & \leq\|G-\hat{G}\|_{\infty}\|u\|_{2}
\end{aligned} \quad \Longrightarrow\|G-\hat{G}\|_{\infty}<\text { tol }
$$

\mathcal{H}_{∞}-norm	best approximation problem for given reduced order r in general open; balanced truncation yields suboptimal solu- tion with computable \mathcal{H}_{∞}-norm bound.		
\mathcal{H}_{2}-norm	necessary conditions for best approximation known; (local) optimizer computable with iterative rational Krylov algo- rithm (IRKA)		
Hankel-norm $\\|G\\|_{H}:=\sigma_{\max }$	optimal Hankel norm approximation (AAK theory).		

Qualitative and Quantitative Study of the Approximation Error
 \section*{Computable error measures}

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

- absolute errors $\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{2},\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{\infty}\left(j=1, \ldots, N_{\omega}\right)$;
- relative errors $\frac{\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{2}}{\left\|G\left(\jmath \omega_{j}\right)\right\|_{2}}, \frac{\left\|G\left(\jmath \omega_{j}\right)-\hat{G}\left(\jmath \omega_{j}\right)\right\|_{\infty}}{\left\|G\left(\jmath \omega_{j}\right)\right\| \infty}$;
- "eyeball norm", i.e. look at frequency response/Bode (magnitude) plot: for SISO system, log-log plot frequency vs. $|G(\jmath \omega)|$ (or $|G(\jmath \omega)-\hat{G}(\jmath \omega)|)$ in decibels, $1 \mathrm{~dB} \simeq 20 \log _{10}$ (value).
For MIMO systems, $q \times m$ array of plots $G_{i j}$.

(c) Peter Benner, MOR via System Balancing

Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by Projection

- Introduction
- Projection-based MOR Methods
(4) Modal Truncation
(5) Balanced Truncation

6 Solving Large-Scale Matrix Equations
(7) Final Remarks

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of G in \mathbb{C}^{-}),
- minimum phase (zeroes of G in \mathbb{C}^{-}),
- passivity

("system does not generate energy").

Model Reduction by Projection

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of G in \mathbb{C}^{-}),
- minimum phase (zeroes of G in \mathbb{C}^{-}),

- passivity

("system does not generate energy").

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$
\|y-\hat{y}\|<\text { tolerance } \cdot\|u\| \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

\Longrightarrow Need computable error bound/estimate!

- Preserve physical properties:
- stability (poles of G in \mathbb{C}^{-}),
- minimum phase (zeroes of G in \mathbb{C}^{-}),
- passivity

$$
\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d \tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)
$$

("system does not generate energy").

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=$ range (P), then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Lemma (Projector Properties)

- If $P=P^{T}$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V}, i.e., $P v=v \forall v \in \mathcal{V}$
- $I-P$ is the complementary projector onto $\operatorname{ker} P$
- If \mathcal{V} is an A-invariant subspace corresponding to a subset of A^{\prime} 's spectrum, then we call P a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another r-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for \mathcal{W}, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto \mathcal{V} along \mathcal{W}.

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Lemma (Projector Properties)

- If $P=P^{T}$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V}, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto $\operatorname{ker} P$.
- If \mathcal{V} is an A-invariant subspace corresponding to a subset of A 's spectrum, then we call P a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another r-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for \mathcal{W}, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto \mathcal{V} along \mathcal{W}.

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Lemma (Projector Properties)

- If $P=P^{T}$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V}, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto $\operatorname{ker} P$.
- If \mathcal{V} is an A-invariant subspace corresponding to a subset of A 's spectrum, then we call P a spectral projector
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another r-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for \mathcal{W}, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto \mathcal{V} along \mathcal{W}.

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Lemma (Projector Properties)

- If $P=P^{T}$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V}, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto ker P.
- If \mathcal{V} is an A-invariant subspace corresponding to a subset of A 's spectrum, then we call P a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another r-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for \mathcal{W}, then $P=V\left(W^{\top} V\right)^{-1} W^{\top}$ is an oblique projector onto \mathcal{V} along \mathcal{W}.

Model Reduction by Projection

Projection Basics

Definition (Projector)

A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P$. Let $\mathcal{V}=\operatorname{range}(P)$, then P is projector onto \mathcal{V}. On the other hand, if $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis of \mathcal{V} and $V=\left[v_{1}, \ldots, v_{r}\right]$, then $P=V\left(V^{T} V\right)^{-1} V^{T}$ is a projector onto \mathcal{V}.

Lemma (Projector Properties)

- If $P=P^{T}$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector (aka: Petrov-Galerkin projection).
- P is the identity operator on \mathcal{V}, i.e., $P v=v \forall v \in \mathcal{V}$.
- $I-P$ is the complementary projector onto ker P.
- If \mathcal{V} is an A-invariant subspace corresponding to a subset of A 's spectrum, then we call P a spectral projector.
- Let $\mathcal{W} \subset \mathbb{R}^{n}$ be another r-dimensional subspace and $W=\left[w_{1}, \ldots, w_{r}\right]$ be a basis matrix for \mathcal{W}, then $P=V\left(W^{T} V\right)^{-1} W^{T}$ is an oblique projector onto \mathcal{V} along \mathcal{W}.

Model Reduction by Projection

Projection-based MOR Methods

Methods:

(1) Modal Truncation
(2) Balanced Truncation
(3) Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
((many more...
Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Model Reduction by Projection

Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace $\mathcal{W}: x \approx V W^{T} x=: \tilde{x}$, where

$$
\operatorname{range}(V)=\mathcal{V}, \quad \text { range }(W)=\mathcal{W}, \quad W^{T} V=I_{r}
$$

Then, with $\hat{x}=W^{T} x$, we obtain $x \approx V \hat{x}$ so that

$$
\|x-\tilde{x}\|=\|x-V \hat{x}\|,
$$

and the reduced-order model is

$$
\hat{A}:=W^{T} A V, \quad \hat{B}:=W^{T} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D)
$$

Model Reduction by Projection

Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u)=W^{T}\left(V W^{T} \dot{x}-A V W^{T} x-B u\right)
$$

Model Reduction by Projection

Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
\begin{aligned}
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u) & =W^{T}\left(V W^{\top} \dot{x}-A V W^{T} x-B u\right) \\
& =\underbrace{W^{\top} \dot{x}}_{\dot{\dot{x}}}-\underbrace{W^{\top} A V}_{=\hat{A}} \underbrace{W^{\top} x}_{=\hat{x}}-\underbrace{W^{\top} B}_{=\hat{B}} u
\end{aligned}
$$

Model Reduction by Projection

Projection-based MOR Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t ; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace $\mathcal{W}: x \approx V W^{\top} x=: \tilde{x}$, and the reduced-order model is $\hat{x}=W^{\top} x$

$$
\hat{A}:=W^{\top} A V, \quad \hat{B}:=W^{\top} B, \quad \hat{C}:=C V, \quad(\hat{D}:=D) .
$$

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}}-A \tilde{x}-B u \perp \mathcal{W}$, since

$$
\begin{aligned}
W^{T}(\dot{\tilde{x}}-A \tilde{x}-B u) & =W^{T}\left(V W^{T} \dot{x}-A V W^{T} x-B u\right) \\
& =\underbrace{W^{T} \dot{x}}_{\dot{\hat{x}}}-\underbrace{W^{T} A V}_{=\hat{A}} \underbrace{W^{T} x}_{=\hat{x}}-\underbrace{W^{T} B}_{=\hat{B}} u \\
& =\dot{\hat{x}}-\hat{A} \hat{x}-\hat{B} u=0
\end{aligned}
$$

Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by Projection
(4) Modal Truncation

- Basic Principle
- Dominant Pole Algorithm
(5) Balanced Truncation

6 Solving Large-Scale Matrix Equations
(7) Final Remarks

Modal Truncation

Basic method:

Assume A is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto A-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then with

$$
V=T(:, 1: r)=\left[t_{1}, \ldots, t_{r}\right], \quad \tilde{W}^{H}=T^{-1}(1: r,:), \quad W=\tilde{W}\left(V^{H} \tilde{W}\right)^{-1}
$$

reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

Modal Truncation

Basic method:

Assume A is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto A-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then with

$$
V=T(:, 1: r)=\left[t_{1}, \ldots, t_{r}\right], \quad \tilde{W}^{H}=T^{-1}(1: r,:), \quad W=\tilde{W}\left(V^{H} \tilde{W}\right)^{-1}
$$

reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D .
$$

Properties:

Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.

Modal Truncation

Basic method:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D .
$$

Properties:

Error bound:

$$
\|G-\hat{G}\|_{\infty} \leq\left\|C_{2}\right\|\left\|B_{2}\right\| \frac{1}{\min _{\lambda \in \Lambda\left(A_{2}\right)}|\operatorname{Re}(\lambda)|}
$$

Proof:

$$
\left.\begin{array}{rl}
G(s) & =C(s I-A)^{-1} B+D=C T T^{-1}(s I-A)^{-1} T T^{-1} B+D \\
& =C T\left(s I-T^{-1} A T\right)^{-1} T^{-1} B+D \\
& =\left[\hat{C}, C_{2}\right]\left[\begin{array}{cc}
\left(s I_{r}-\hat{A}\right)^{-1} & \\
& =G(s)+C_{2}\left(s I_{n-r}-A_{2}\right)^{-1} B_{2},
\end{array}\right]\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right]+D \\
& =\hat{G}(s)^{-1}
\end{array}\right]
$$

Modal Truncation

Basic method:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D .
$$

Properties:

Error bound:

$$
\|G-\hat{G}\|_{\infty} \leq\left\|C_{2}\right\|\left\|B_{2}\right\| \frac{1}{\min _{\lambda \in \Lambda\left(A_{2}\right)}|\operatorname{Re}(\lambda)|}
$$

Proof:

$$
G(s)=\hat{G}(s)+C_{2}\left(s I_{n-r}-A_{2}\right)^{-1} B_{2},
$$

observing that $\|G-\hat{G}\|_{\infty}=\sup _{\omega \in \mathbb{R}} \sigma_{\max }\left(C_{2}\left(\jmath \omega I_{n-r}-A_{2}\right)^{-1} B_{2}\right)$, and

$$
C_{2}\left(\jmath \omega I_{n-r}-A_{2}\right)^{-1} B_{2}=C_{2} \operatorname{diag}\left(\frac{1}{\jmath \omega-\lambda_{r+1}}, \ldots, \frac{1}{\jmath \omega-\lambda_{n}}\right) B_{2} .
$$

Modal Truncation

Basic method:

Assume A is diagonalizable, $T^{-1} A T=D_{A}$, project state-space onto A-invariant subspace $\mathcal{V}=\operatorname{span}\left(t_{1}, \ldots, t_{r}\right), t_{k}=$ eigenvectors corresp. to "dominant" modes / eigenvalues of A. Then reduced-order model is

$$
\hat{A}:=W^{H} A V=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad \hat{B}:=W^{H} B, \quad \hat{C}=C V
$$

Also computable by truncation:

$$
T^{-1} A T=\left[\begin{array}{cc}
\hat{A} & \\
& A_{2}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{c}
\hat{B} \\
B_{2}
\end{array}\right], \quad C T=\left[\hat{C}, C_{2}\right], \quad \hat{D}=D
$$

Difficulties:

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute.
([Litz '79] use Jordan canoncial form; otherwise merely heuristic criteria, e.g., [VARGA '95]. Recent improvement: dominant pole algorithm.)
- Error bound not computable for really large-scale problems.

Basic Principle

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, $n=348, m=q=1$, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G-\hat{G}\|_{\infty} \leq 1.21 \cdot 10^{3}$

Bode plots of transfer functions and error function

MATLAB ${ }^{\circledR}$ demo

Basic Principle

Example

BEAM, SISO system from SLICOT Benchmark Collection for Model Reduction, $n=348, m=q=1$, reduced using 13 dominant complex conjugate eigenpairs, error bound yields $\|G-\hat{G}\|_{\infty} \leq 1.21 \cdot 10^{3}$

Bode plots of transfer functions and error function

MATLAB ${ }^{\circledR}$ demo.

Basic Principle

Extensions

Base enrichment

Static modes are defined by setting $\dot{x}=0$ and assuming unit loads, i.e., $u(t) \equiv e_{j}, j=1, \ldots, m$:

$$
0=A x(t)+B e_{j} \quad \Longrightarrow \quad x(t) \equiv-A^{-1} b_{j} .
$$

Projection subspace \mathcal{V} is then augmented by $A^{-1}\left[b_{1}, \ldots, b_{m}\right]=A^{-1} B$. Interpolation-projection framework $\Longrightarrow G(0)=\hat{G}(0)$!
If two sided projection is used, complimentary subspace can be augmented by $A^{-T} C^{T} \Longrightarrow G^{\prime}(0)=\hat{G}^{\prime}(0)$!
Note: if $m \neq q$, add random vectors or delete some of the columns in $A^{-T} C^{T}$.

Basic Principle

Extensions

Guyan reduction (static condensation)

Partition states in masters $x_{1} \in \mathbb{R}^{r}$ and slaves $x_{2} \in \mathbb{R}^{n-r}$ (FEM terminology) Assume stationarity, i.e., $\dot{x}=0$ and solve for x_{2} in

$$
\begin{aligned}
0 & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right] u \\
\Rightarrow \quad x_{2} & =-A_{22}^{-1} A_{21} x_{1}-A_{22}^{-1} B_{2} u .
\end{aligned}
$$

Inserting this into the first part of the dynamic system

$$
\dot{x}_{1}=A_{11} x_{1}+A_{12} x_{2}+B_{1} u, \quad y=C_{1} x_{1}+C_{2} x_{2}
$$

then yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}-C_{2} A_{22}^{-1} B_{2} u .
\end{aligned}
$$

Modal Truncation

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$:

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.

Modal Truncation

Dominant Pole Algorithm

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$:

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
Note: this follows using the spectral decomposition $A=X D X^{-1}$, with $X=\left[x_{1}, \ldots, x_{n}\right]$ the right and $X^{-1}=: Y=\left[y_{1}, \ldots, y_{n}\right]^{H}$ the left eigenvector matrices:

$$
\begin{aligned}
G(s) & =C\left(s l-X D X^{-1}\right)^{-1} B=C X\left(s I-\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}\right)^{-1} Y B \\
& =\left[C x_{1}, \ldots, C_{x_{n}}\right]\left[\begin{array}{ccc}
\frac{1}{s-\lambda_{1}} & & \\
& \ddots & \\
& & \left.\frac{1}{s-\lambda_{n}}\right]\left[\begin{array}{l}
y_{1}^{H} B \\
\vdots \\
y_{n}^{H} B
\end{array}\right] \\
& =\sum_{k=1}^{n} \frac{\left(C x_{k}\right)\left(y_{k}^{H} B\right)}{s-\lambda_{k}} .
\end{array} .\right.
\end{aligned}
$$

Modal Truncation

Dominant Pole Algorithm

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$:

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
Note: $R_{k}=\left(C x_{k}\right)\left(y_{k}^{H} B\right)$ are the residues of G in the sense of the residue theorem of complex analysis:

$$
\begin{aligned}
\operatorname{res}\left(G, \lambda_{\ell}\right)=\lim _{s \rightarrow \lambda_{\ell}}\left(s-\lambda_{\ell}\right) G(s)=\sum_{k=1}^{n} & \underbrace{\lim _{s \rightarrow \lambda_{\ell}} \frac{s-\lambda_{\ell}}{s-\lambda_{k}}} \quad R_{k}=R_{\ell} . \\
= & \left\{\begin{array}{l}
0 \text { for } k \neq \ell \\
1 \text { for } k=\ell
\end{array}\right.
\end{aligned}
$$

Modal Truncation

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$:

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e.. $\left(\lambda_{j}, x_{j}, y_{j}\right)$ with largest

$$
\left\|R_{k}\right\| / \mid \text { re }\left(\lambda_{k}\right) \mid .
$$

Modal Truncation

Dominant Pole Algorithm

Pole-Residue Form of Transfer Function

Consider partial fraction expansion of transfer function with $D=0$:

$$
G(s)=\sum_{k=1}^{n} \frac{R_{k}}{s-\lambda_{k}}
$$

with the residues $R_{k}:=\left(C x_{k}\right)\left(y_{k}^{H} B\right) \in \mathbb{C}^{q \times m}$.
As projection basis use spaces spanned by right/left eigenvectors corresponding to dominant poles, i.e.. $\left(\lambda_{j}, x_{j}, y_{j}\right)$ with largest

$$
\left\|R_{k}\right\| / \mid \text { re }\left(\lambda_{k}\right) \mid .
$$

Remark

The dominant modes have most important influence on the input-output behavior of the system and are responsible for the "peaks"' in the frequency response.

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Dominant Poles

Random SISO Example ($B, C^{T} \in \mathbb{R}^{n}$)

Algorithms for computing dominant poles and eigenvectors:

- Subspace Accelerated Dominante Pole Algorithm (SADPA),
- Rayleigh-Quotient-Iteration (RQI),
- Jacobi-Davidson-Method.

Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by Projection
(4) Modal Truncation
(5) Balanced Truncation

- The basic method
- Theoretical Background
- Singular Perturbation Approximation
- Balancing-Related Methods
(6) Solving Large-Scale Matrix Equations
(7) Final Remarks

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Basic principle:

- Recall: a stable system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

satisfy: $P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ with $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}>0$.

- $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the Hankel singular values (HSVs) of Σ.
- Compute balanced realization of the system via state-space transformation

$$
\begin{aligned}
\mathcal{T}:(A, B, C, D) & \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
\end{aligned}
$$

- Truncation $\rightsquigarrow(\hat{A}, \hat{B}, \hat{C}, \hat{D}):=\left(A_{11}, B_{1}, C_{1}, D\right)$.

Balanced Truncation

Motivation:

The HSVs $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are system invariants: they are preserved under

$$
\mathcal{T}:(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

Balanced Truncation

Motivation:

The HSVs $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are system invariants: they are preserved under

$$
\mathcal{T}:(A, B, C, D) \mapsto\left(T A T^{-1}, T B, C T^{-1}, D\right)
$$

in transformed coordinates, the Gramians satisfy

$$
\begin{aligned}
& \qquad \begin{aligned}
\left(T A T^{-1}\right)\left(T P T^{T}\right)+\left(T P T^{T}\right)\left(T A T^{-1}\right)^{T}+(T B)(T B)^{T}=0, \\
\left(T A T^{-1}\right)^{T}\left(T^{-T} Q T^{-1}\right)+\left(T^{-T} Q T^{-1}\right)\left(T A T^{-1}\right)+\left(C T^{-1}\right)^{T}\left(C T^{-1}\right)=0 \\
\Rightarrow\left(T P T^{T}\right)\left(T^{-T} Q T^{-1}\right)=T P Q T^{-1},
\end{aligned} \\
& \text { hence } \Lambda(P Q)=\Lambda\left(\left(T P T^{T}\right)\left(T^{-T} Q T^{-1}\right)\right) .
\end{aligned}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{T} R$.
(0) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{l}V_{1}^{\top} \\ V_{2}^{\top}\end{array}\right]$

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{\top} U_{1} \Sigma_{1}^{-\frac{1}{2}} .
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{T} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{\top} A V, W^{\top} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}} .
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{\top} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
V^{\top} W=\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
V^{T} W=\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{T} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
\begin{aligned}
V^{\top} W & =\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{\top} V_{1} \Sigma_{1}^{-\frac{1}{2}} \\
& =\Sigma_{1}^{-\frac{1}{2}}\left[I_{r}, 0\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right] \Sigma_{1}^{-\frac{1}{2}}
\end{aligned}
$$

Balanced Truncation

Implementation: SR Method

(1) Compute (Cholesky) factors of the Gramians, $P=S^{\top} S, Q=R^{\top} R$.
(2) Compute SVD $S R^{T}=\left[U_{1}, U_{2}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ V_{2}^{T}\end{array}\right]$.

- ROM is $\left(W^{T} A V, W^{T} B, C V, D\right)$, where

$$
W=R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}, \quad V=S^{T} U_{1} \Sigma_{1}^{-\frac{1}{2}}
$$

Note:

$$
\begin{aligned}
V^{\top} W & =\left(\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} S\right)\left(R^{T} V_{1} \Sigma_{1}^{-\frac{1}{2}}\right)=\Sigma_{1}^{-\frac{1}{2}} U_{1}^{T} U \Sigma V^{\top} V_{1} \Sigma_{1}^{-\frac{1}{2}} \\
& =\Sigma_{1}^{-\frac{1}{2}}\left[I_{r}, 0\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right] \Sigma_{1}^{-\frac{1}{2}}=\Sigma_{1}^{-\frac{1}{2}} \Sigma_{1} \Sigma_{1}^{-\frac{1}{2}}=I_{r}
\end{aligned}
$$

$\Longrightarrow V W^{\top}$ is an oblique projector, hence balanced truncation is a Petrov-Galerkin projection method.

Balanced Truncation

Properties:

- Reduced-order model is stable with $\mathrm{HSVs} \sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2} .
$$

Balanced Truncation

Properties:

- Reduced-order model is stable with HSVs $\sigma_{1}, \ldots, \sigma_{r}$.
- Adaptive choice of r via computable error bound:

$$
\|y-\hat{y}\|_{2} \leq\left(2 \sum_{k=r+1}^{n} \sigma_{k}\right)\|u\|_{2} .
$$

Balanced Truncation

Theoretical Background

| Linear, Time-Invariant (LTI) Systems | |
| :--- | :--- | :--- |
| $\dot{x}=A x+B u$, | $A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}$, |
| $y=C x+D u, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m}$. | |

Balanced Truncation

Theoretical Background

0000000
 Balanced Truncation

Theoretical Background

```
Linear, Time-Invariant (LTI) Systems
    \(\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}\),
    \(y=C x+D u, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m}\).
```

State-Space Description for I/O-Relation
Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

Balanced Truncation

Theoretical Background

$$
\begin{array}{ll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, \quad C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

$$
\begin{array}{lll}
\text { Linear, Time-Invariant }(\text { LTI }) \text { Systems } \\
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & C \in \mathbb{R}^{q \times n}, \quad D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A!
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{llll}
\dot{x}=A x+B u, & & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A !
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{llll}
\dot{x}=A x+B u, & & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y=C x+D u, & & C \in \mathbb{R}^{q \times n}, & D \in \mathbb{R}^{q \times m} .
\end{array}
$$

State-Space Description for I/O-Relation

Variation-of-constants \Longrightarrow

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R} .
$$

- $\mathcal{S}: \mathcal{U} \rightarrow \mathcal{Y}$ is a linear operator between (function) spaces.
- Recall: $A \in \mathbb{R}^{n \times m}$ is a linear operator, $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$!
- Basic Idea: use SVD approximation as for matrix A !
- Problem: in general, \mathcal{S} does not have a discrete SVD and can therefore not be approximated as in the matrix case!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
\dot{x} & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y & =C x, & & C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

 Instead of$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
\dot{x} & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y & =C x, & & C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\rightsquigarrow Hankel singular values $\left\{\sigma_{j}\right\}_{j=1}^{\infty}: \sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m} \text {, } \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

Instead of

$$
\mathcal{S}: u \mapsto y, \quad y(t)=\int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

use Hankel operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\rightsquigarrow Hankel singular values $\left\{\sigma_{j}\right\}_{j=1}^{\infty}: \sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0$.
\Longrightarrow SVD-type approximation of \mathcal{H} possible!

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{lll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y=C x, & C \in \mathbb{R}^{q \times n} . &
\end{array}
$$

Alternative to State-Space Operator: Hankel Operator

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{array}{ll}
\dot{x}=A x+B u, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m} \\
y=C x, & C \in \mathbb{R}^{q \times n} .
\end{array}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0 .
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed \Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
\dot{x} & =A x+B u, & & A \in \mathbb{R}^{n \times n}, \\
y & =C x, & & C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0 .
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
\Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

Theoretical Background

Linear, Time-Invariant (LTI) Systems

$$
\begin{aligned}
& \dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
& y=C x, \quad C \in \mathbb{R}^{q \times n} .
\end{aligned}
$$

Alternative to State-Space Operator: Hankel Operator

$$
\mathcal{H}: u_{-} \mapsto y_{+}, \quad y_{+}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) d \tau \quad \text { for all } t>0 .
$$

\mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD
\Rightarrow Best approximation problem w.r.t. 2-induced operator norm well-posed
\Rightarrow solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
But: computationally unfeasible for large-scale systems.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem
Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=: C e^{A t} \underbrace{\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau}_{=: z}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=: C e^{A t} \underbrace{\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau}_{=: z}=C e^{A t} z
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$8000000000000000000000000000000 \quad 000000$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=\int_{0}^{\infty} B^{T} e^{A^{T}(\tau-t)} C^{T} y_{+}(\tau) d \tau
$$

$3000000000000000000000000000000 \quad 00000$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=\int_{0}^{\infty} B^{T} e^{A^{T}(\tau-t)} C^{T} y_{+}(\tau) d \tau=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

0000000000000000000000000000000000

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} y_{+}(t)= \\
=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau \\
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)==B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau \\
& =B^{T} e^{-A^{T} t} \underbrace{\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau}_{\equiv Q} z
\end{aligned}
$$

$9000000000000000000000000000-000000$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)=B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} z d \tau \\
& =B^{T} e^{-A^{T} t} Q z
\end{aligned}
$$

$0000000000000000000000000000-000000$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)==B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z
$$

$0000000000000000000000000000-000000$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: Hankel operator

$$
y_{+}(t)=\mathcal{H} u_{-}(t)=\int_{-\infty}^{0} C e^{A(t-\tau)} B u_{-}(\tau) d \tau=C e^{A t} z
$$

Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\mathcal{H}^{*} y_{+}(t)==B^{T} e^{-A^{T} t} \int_{0}^{\infty} e^{A^{T} \tau} C^{T} y_{+}(\tau) d \tau
$$

Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t)
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$, Hence,

$$
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t)
$$

$$
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right)
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{gathered}
\mathcal{H}^{*} \mathcal{H} u_{-}(t)=B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z=\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau
\end{gathered}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
= & \frac{1}{\sigma^{2}} \int_{-\infty}^{0} e^{-A \tau} B B^{T} e^{-A^{T} \tau} d \tau Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z \Longrightarrow & \left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \int_{-\infty}^{0} e^{-A \tau} B B^{T} e^{-A^{T} \tau} d \tau Q z \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\Lambda(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \left.\Longrightarrow \text { (recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z \\
& =\frac{1}{\sigma^{2}} P Q z
\end{aligned}
$$

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Proof: \quad Singular values of $\mathcal{H}=$ square roots of eigenvalues of $\mathcal{H}^{*} \mathcal{H}$,

$$
\begin{aligned}
\mathcal{H}^{*} \mathcal{H} u_{-}(t) & =B^{T} e^{-A^{T} t} Q z \doteq \sigma^{2} u_{-}(t) \\
\Longrightarrow u_{-}(t)=\frac{1}{\sigma^{2}} B^{T} e^{-A^{T} t} Q z & \Longrightarrow\left(\text { recalling } z=\int_{-\infty}^{0} e^{-A \tau} B u_{-}(\tau) d \tau\right) \\
z & =\int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^{2}} B^{T} e^{-A^{T} \tau} Q z d \tau \\
& =\frac{1}{\sigma^{2}} \underbrace{\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t}_{\equiv P} Q z \\
& =\frac{1}{\sigma^{2}} P Q z
\end{aligned}
$$

$$
\Longleftrightarrow \quad P Q z=\sigma^{2} z
$$

\square

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let P, Q be the controllability and observability Gramians of an LTI system Σ. Then the Hankel singular values $\wedge(P Q)^{\frac{1}{2}}=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ are the singular values of the Hankel operator associated to Σ.

Theorem

Let the reduced-order system $\hat{\Sigma}:(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r \leq \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_{1}, \ldots, \sigma_{r}$.

Balanced Truncation

The Hankel Singular Values are Singular Values!

Theorem

Let the reduced-order system $\hat{\Sigma}:(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ with $r \leq \hat{n}$ be computed by balanced truncation. Then the reduced-order model $\hat{\Sigma}$ is balanced, stable, minimal, and its HSVs are $\sigma_{1}, \ldots, \sigma_{r}$.

Proof: Note that in balanced coordinates, the Gramians are diagonal and equal to

$$
\operatorname{diag}\left(\Sigma_{1}, \Sigma_{2}\right)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}, \sigma_{r+1}, \ldots, \sigma_{n}\right)
$$

Hence, the Gramian satisfies
$\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]+\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]^{T}+\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]^{T}=0$,
whence we obtain the "controllability Lyapunov equation" of the reduced-order system,

$$
A_{11} \Sigma_{1}+\Sigma_{1} A_{11}^{T}+B_{1} B_{1}^{T}=0
$$

The result follows from $\hat{A}=A_{11}, \hat{B}=B_{1}, \Sigma_{1}>0$, the solution theory of Lyapunov equations and the analogous considerations for the observability Gramian. (Minimality is a simple consequence of $\hat{P}=\Sigma_{1}=\hat{Q}>0$.)

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.
Balanced truncation would set $x_{2}=0$ and use $\left(A_{11}, B_{1}, C_{1}, D\right)$ as reduced-order model, thereby the information present in the remaining model is ignored!

Singular Perturbation Approximation (aka Balanced Residualization)

Assume the system

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u, \quad y=\left[C_{1}, C_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D u
$$

is in balanced coordinates.
Balanced truncation would set $x_{2}=0$ and use $\left(A_{11}, B_{1}, C_{1}, D\right)$ as reduced-order model, thereby the information present in the remaining model is ignored!
Particularly, if $G(0)=\hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_{2}=0$, set $\dot{x}_{2}=0$. This yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}+\left(D-C_{2} A_{22}^{-1} B_{2}\right) u
\end{aligned}
$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0)=\hat{G}(0)$ as desired.

Singular Perturbation Approximation (aka Balanced Residualization)

Particularly, if $G(0)=\hat{G}(0)$ ("zero steady-state error") is required, one can apply the same condensation technique as in Guyan reduction: instead of $x_{2}=0$, set $\dot{x}_{2}=0$. This yields the reduced-order model

$$
\begin{aligned}
\dot{x}_{1} & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u \\
y & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}+\left(D-C_{2} A_{22}^{-1} B_{2}\right) u
\end{aligned}
$$

with

- the same properties as the reduced-order model w.r.t. stability, minimality, error bound, but $\hat{D} \neq D$;
- zero steady-state error, $G(0)=\hat{G}(0)$ as desired.

Note:

- A_{22} invertible as in balanced coordinates, $A_{22} \Sigma_{2}+\Sigma_{2} A_{22}^{T}+B_{2} B_{2}^{T}=0$ and $\left(A_{22}, B_{2}\right)$ controllable, $\Sigma_{2}>0 \Rightarrow A_{22}$ stable.
- If the original system is not balanced, first compute a minimal realization by applying balanced truncation with $r=\hat{n}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{T} S, Q=R^{T} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$ and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Classical Balanced Truncation (BT)

- $P=$ controllability Gramian of system given by (A, B, C, D).
- $Q=$ observability Gramian of system given by (A, B, C, D).
- P, Q solve dual Lyapunov equations

$$
A P+P A^{T}+B B^{T}=0, \quad A^{T} Q+Q A+C^{T} C=0
$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

LQG Balanced Truncation (LQGBT) [Jonckheere/Silverman '83]

- $P / Q=$ controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$
\begin{aligned}
& 0=A P+P A^{T}-P C^{T} C P+B^{T} B \\
& 0=A^{T} Q+Q A-Q B B^{T} Q+C^{T} C .
\end{aligned}
$$

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Balanced Stochastic Truncation (BST) [Desai/Pal '84, Green '88]

- $P=$ controllability Gramian of system given by (A, B, C, D), i.e., solution of Lyapunov equation $A P+P A^{T}+B B^{T}=0$.
- $Q=$ observability Gramian of right spectral factor of power spectrum of system given by (A, B, C, D), i.e., solution of ARE

$$
\hat{A}^{T} Q+Q \hat{A}+Q B_{W}\left(D D^{T}\right)^{-1} B_{W}^{T} Q+C^{T}\left(D D^{T}\right)^{-1} C=0,
$$

where $\hat{A}:=A-B_{W}\left(D D^{T}\right)^{-1} C, B_{W}:=B D^{T}+P C^{T}$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{\top} S, Q=R^{\top} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- P, Q solve dual AREs

$$
\begin{aligned}
& 0=\bar{A} P+P \bar{A}^{T}+P C^{T} \bar{R}^{-1} C P+B \bar{R}^{-1} B^{T}, \\
& 0=\bar{A}^{T} Q+Q \bar{A}+Q B \bar{R}^{-1} B^{T} Q+C^{T} \bar{R}^{-1} C,
\end{aligned}
$$

where $\bar{R}=D+D^{T}, \bar{A}=A-B \bar{R}^{-1} C$.

Balancing-Related Methods

Basic Principle

Given positive semidefinite matrices $P=S^{T} S, Q=R^{T} R$, compute balancing state-space transformation so that

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\Sigma, \quad \sigma_{1} \geq \ldots \geq \sigma_{n}>0,
$$

and truncate corresponding realization at size r with $\sigma_{r}>\sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) - based on bounded real lemma [Opdenacker/Jonckheere '88];
- H_{∞} balanced truncation (HinfBT) - closed-loop balancing based on H_{∞} compensator [Mustafa/Glover '91].

Both approaches require solution of dual AREs.

- Frequency-weighted versions of the above approaches.

Balancing-Related Methods

Properties

- Guaranteed preservation of physical properties like
- stability (all),
- passivity (PRBT),
- minimum phase (BST).
- Computable error bounds, e.g.,

$$
\begin{aligned}
\text { BT: }\left\|G-G_{r}\right\|_{\infty} & \leq 2 \sum_{j=r+1}^{n} \sigma_{j}^{B T}, \\
\text { LQGBT: }\left\|G-G_{r}\right\|_{\infty} & \leq 2 \sum_{j=r+1}^{n} \frac{\sigma_{j}^{L Q G}}{\sqrt{1+\left(\sigma_{j}^{L Q G}\right)^{2}}} \\
\text { BST: }\left\|G-G_{r}\right\|_{\infty} & \leq\left(\prod_{j=r+1}^{n} \frac{1+\sigma_{j}^{B S T}}{1-\sigma_{j}^{B S T}}-1\right)\|G\|_{\infty},
\end{aligned}
$$

- Can be combined with singular perturbation approximation for steady-state performance.
- Computations can be modularized.

Outline

(1) Introduction
(2) Mathematical Basics
(3) Model Reduction by ProjectionModal TruncationBalanced Truncation
(6) Solving Large-Scale Matrix Equations

- Linear Matrix Equations
- Numerical Methods for Solving Lyapunov Equations
- Solving Large-Scale Algebraic Riccati Equations
- Software
(7) Final Remarks

Solving Large-Scale Matrix Equations

 Large-Scale Algebraic Lyapunov and Riccati Equations

 Large-Scale Algebraic Lyapunov and Riccati Equations}Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation

$$
0=\mathcal{L}(X):=A^{\top} X+X A+W .
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{\top} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{\top} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W .
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{\top} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM),
- G, W low-rank with $G, W \in\left\{B B^{\top}, C^{\top} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Large-Scale Algebraic Lyapunov and Riccati Equations

Algebraic Riccati equation (ARE) for $A, G=G^{T}, W=W^{T} \in \mathbb{R}^{n \times n}$ given and $X \in \mathbb{R}^{n \times n}$ unknown:

$$
0=\mathcal{R}(X):=A^{T} X+X A-X G X+W
$$

$G=0 \Longrightarrow$ Lyapunov equation:

$$
0=\mathcal{L}(X):=A^{T} X+X A+W
$$

Typical situation in model reduction and optimal control problems for semi-discretized PDEs:

- $n=10^{3}-10^{6}\left(\Longrightarrow 10^{6}-10^{12}\right.$ unknowns! $)$,
- A has sparse representation $\left(A=-M^{-1} S\right.$ for FEM $)$,
- G, W low-rank with $G, W \in\left\{B B^{T}, C^{T} C\right\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, \quad C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) $\mathcal{O}\left(n^{3}\right)$ methods are not applicable!

Solving Large-Scale Matrix Equations

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).
eigenvalues of P_{h} for $\mathbf{h}=\mathbf{0 . 0 1}$

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Solving Large-Scale Matrix Equations

Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov equations).
eigenvalues of P_{h} for $\mathrm{h}=\mathbf{0 . 0 1}$

Example:

- Linear 1D heat equation with point control,
- $\Omega=[0,1]$,
- FEM discretization using linear B-splines,
- $h=1 / 100 \Longrightarrow n=101$.

Idea: $X=X^{\top} \geq 0 \Longrightarrow$

$$
X=Z Z^{T}=\sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)}\left(Z^{(r)}\right)^{T}=\sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}
$$

\Longrightarrow Goal: compute $Z^{(r)} \in \mathbb{R}^{n \times r}$ directly w/o ever forming X !

Solving Large-Scale Matrix Equations

Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation
$A X+X B=W \quad A X B-X=W$
with data $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

$$
A X+X A^{T}=W \quad A X A^{T}-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, W=W^{\top} \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Solving Large-Scale Matrix Equations

Linear Matrix Equations

Equations without symmetry

Sylvester equation discrete Sylvester equation
$A X+X B=W \quad A X B-X=W$
with data $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}, W \in \mathbb{R}^{n \times m}$ and unknown $X \in \mathbb{R}^{n \times m}$.

Equations with symmetry

Lyapunov equation Stein equation (discrete Lyapunov equation)

$$
A X+X A^{T}=W \quad A X A^{T}-X=W
$$

with data $A \in \mathbb{R}^{n \times n}, W=W^{T} \in \mathbb{R}^{n \times n}$ and unknown $X \in \mathbb{R}^{n \times n}$.

Here: focus on (Sylvester and) Lyapunov equations; analogous results and methods for discrete versions exist.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,

Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k} \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}$.

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz $=$ Sylvester equation has unique solution.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{\top} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k} \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}$.

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz $=$ Sylvester equation has unique solution.

Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k} \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

[^1]
Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k} \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\}
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

[^2]
Linear Matrix Equations

Solvability

Using the Kronecker (tensor) product, $A X+X B=W$ is equivalent to

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

Hence,
Sylvester equation has a unique solution

$$
M:=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right) \text { is invertible. }
$$

$$
0 \notin \Lambda(M)=\Lambda\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right)=\left\{\lambda_{j}+\mu_{k} \mid \lambda_{j} \in \Lambda(A), \mu_{k} \in \Lambda(B)\right\} .
$$

$$
\wedge(A) \cap \wedge(-B)=\emptyset
$$

Corollary

A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$
A X+X B=W
$$

via the equivalent linear system of equations

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

requires

- LU factorization of $n m \times n m$ matrix; for $n \approx m$, complexity is $\frac{2}{3} n^{6}$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^{2} data for X, but up to n^{4} data for triangular factors!

```
Example
n=m=1,000=> Gaussian elimination on an Intel core i7 (Westmere, 6
cores, 3.46 GHz 83.2 GFLOP peak) would take > 94 DAYS and 7.3
TB of memory!
```


Linear Matrix Equations

Complexity Issues

Solving the Sylvester equation

$$
A X+X B=W
$$

via the equivalent linear system of equations

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(W)
$$

requires

- LU factorization of $n m \times n m$ matrix; for $n \approx m$, complexity is $\frac{2}{3} n^{6}$;
- storing $n \cdot m$ unknowns: for $n \approx m$ we have n^{2} data for X, but up to n^{4} data for triangular factors!

[^3]
Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester equations, B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

$$
\text { Not feasible for large-scale problems (} n>10,000 \text {). }
$$

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester equations, B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

Not feasible for large-scale problems ($n>10,000$).

Numerical Methods for Solving Lyapunov Equations Traditional Methods

Bartels-Stewart method for Sylvester and Lyapunov equation (lyap); Hessenberg-Schur method for Sylvester equations (lyap);
Hammarling's method for Lyapunov equations $A X+X A^{T}+G G^{T}=0$ with A Hurwitz (lyapchol).
All based on the fact that if A, B^{T} are in Schur form, then

$$
M=\left(I_{m} \otimes A\right)+\left(B^{T} \otimes I_{n}\right)
$$

is block-upper triangular. Hence, solve $M x=b$ by back-substitution.

- Clever implementation of back-substitution process requires $n m(n+m)$ flops.
- For Sylvester equations, B in Hessenberg form is enough (\rightsquigarrow Hessenberg-Schur method).
- Hammarling's method computes Cholesky factor Y of X directly.
- All methods require Schur decomposition of A and Schur or Hessenberg decomposition of $B \Rightarrow$ need QR algorithm which requires $25 n^{3}$ flops for Schur decomposition.

$$
\text { Not feasible for large-scale problems }(n>10,000) \text {. }
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\Lambda(Z) \cap \imath \mathbb{R}=\emptyset$ and Jordan canonical form

$$
Z=S\left[\begin{array}{cc}
J^{+} & 0 \\
0 & J^{-}
\end{array}\right] S^{-1}
$$

the matrix sign function is

$$
\operatorname{sign}(Z):=S\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] S^{-1}
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Definition

For $Z \in \mathbb{R}^{n \times n}$ with $\wedge(Z) \cap \imath \mathbb{R}=\emptyset$ and Jordan canonical form

$$
Z=S\left[\begin{array}{cc}
J^{+} & 0 \\
0 & J^{-}
\end{array}\right] S^{-1}
$$

the matrix sign function is

$$
\operatorname{sign}(Z):=S\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right] S^{-1}
$$

Lemma

Let $T \in \mathbb{R}^{n \times n}$ be nonsingular and Z as before, then

$$
\operatorname{sign}\left(T Z T^{-1}\right)=T \operatorname{sign}(Z) T^{-1}
$$

Numerical Methods for Solving Lyapunov Equations The Sign Function Method

Computation of sign (Z)

$\operatorname{sign}(Z)$ is root of $I_{n} \Longrightarrow$ use Newton's method to compute it:

$$
\begin{aligned}
& Z_{0} \leftarrow Z, \quad Z_{j+1} \leftarrow \frac{1}{2}\left(c_{j} Z_{j}+\frac{1}{c_{j}} Z_{j}^{-1}\right), \quad j=1,2, \ldots \\
\Longrightarrow & \operatorname{sign}(Z)=\lim _{j \rightarrow \infty} Z_{j} .
\end{aligned}
$$

$c_{j}>0$ is scaling parameter for convergence acceleration and rounding error minimization, e.g.

$$
c_{j}=\sqrt{\frac{\left\|Z_{j}^{-1}\right\|_{F}}{\left\|Z_{j}\right\|_{F}}}
$$

based on "equilibrating" the norms of the two summands [Higham '86].

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If $X \in \mathbb{R}^{n \times n}$ is a solution of $A X+X A^{T}+W=0$, then

$$
\underbrace{\left[\begin{array}{cc}
I_{n} & -X \\
0 & I_{n}
\end{array}\right]}_{=T^{-1}} \underbrace{\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]}_{=: H} \underbrace{\left[\begin{array}{cc}
I_{n} & X \\
0 & I_{n}
\end{array}\right]}_{=: T}=\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] .
$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

Solving Lyapunov Equations with the Matrix Sign Function Method

Key observation:
If $X \in \mathbb{R}^{n \times n}$ is a solution of $A X+X A^{T}+W=0$, then

$$
\underbrace{\left[\begin{array}{cc}
I_{n} & -X \\
0 & I_{n}
\end{array}\right]}_{=T^{-1}} \underbrace{\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]}_{=: H} \underbrace{\left[\begin{array}{cc}
I_{n} & X \\
0 & I_{n}
\end{array}\right]}_{=: T}=\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] .
$$

Hence, if A is Hurwitz (i.e., asymptotically stable), then

$$
\begin{aligned}
\operatorname{sign}(H) & =\operatorname{sign}\left(T\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right] T^{-1}\right)=T \operatorname{sign}\left(\left[\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right]\right) T^{-1} \\
& =\left[\begin{array}{cc}
-I_{n} & 2 X \\
0 & I_{n}
\end{array}\right]
\end{aligned}
$$

Solving Lyapunov Equations with the Matrix Sign Function Method

Apply sign function iteration $Z \leftarrow \frac{1}{2}\left(Z+Z^{-1}\right)$ to $H=\left[\begin{array}{cc}A & W \\ 0 & -A^{T}\end{array}\right]$:

$$
H+H^{-1}=\left[\begin{array}{cc}
A & W \\
0 & -A^{T}
\end{array}\right]+\left[\begin{array}{cc}
A^{-1} & A^{-1} W A^{-T} \\
0 & -A^{-T}
\end{array}\right]
$$

\Longrightarrow Sign function iteration for Lyapunov equation:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{i+1} \leftarrow \frac{1}{2}\left(W_{i}+A_{i}^{-1} W_{i} A_{i}^{-T}\right),
\end{array} \quad j=0,1,2, \ldots
$$

Define $A_{\infty}:=\lim _{j \rightarrow \infty} A_{j}, W_{\infty}:=\lim _{j \rightarrow \infty} W_{j}$.

Theorem

If A is Hurwitz, then

$$
A_{\infty}=-I_{n} \quad \text { and } \quad X=\frac{1}{2} W_{\infty} .
$$

Solving Lyapunov Equations with the Matrix Sign Function Method

 Factored formRecall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right),
\end{array} \quad j=0,1,2, \ldots
$$

Now consider the second iteration for $W=B B^{\top}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}:$

$$
\begin{aligned}
\frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-\top}\right) & =\frac{1}{2}\left(B_{j} B_{j}^{\top}+A_{j}^{-1} B_{j} B_{j}^{\top} A_{j}^{-\top}\right) \\
& =\frac{1}{2}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]^{\top}
\end{aligned}
$$

Hence, obtain factored iteration

$$
B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]
$$

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{\top}$

Solving Lyapunov Equations with the Matrix Sign Function Method

 Factored formRecall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right), \quad j=0,1,2, \ldots
\end{array}
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

Hence, obtain factored iteration

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{T}$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right), \quad j=0,1,2, \ldots
\end{array}
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

$$
\begin{aligned}
\frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right) & =\frac{1}{2}\left(B_{j} B_{j}^{T}+A_{j}^{-1} B_{j} B_{j}^{T} A_{j}^{-T}\right) \\
& =\frac{1}{2}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]^{T}
\end{aligned}
$$

Hence, obtain factored iteration

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{T}$

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form

Recall sign function iteration for $A X+X A^{T}+W=0$:

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
W_{0} \leftarrow G, & W_{j+1} \leftarrow \frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right), \quad j=0,1,2, \ldots
\end{array}
$$

Now consider the second iteration for $W=B B^{T}$, starting with $W_{0}=B B^{T}=: B_{0} B_{0}^{T}$:

$$
\begin{aligned}
\frac{1}{2}\left(W_{j}+A_{j}^{-1} W_{j} A_{j}^{-T}\right) & =\frac{1}{2}\left(B_{j} B_{j}^{T}+A_{j}^{-1} B_{j} B_{j}^{T} A_{j}^{-T}\right) \\
& =\frac{1}{2}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]^{T}
\end{aligned}
$$

Hence, obtain factored iteration

$$
B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right]
$$

with $S:=\frac{1}{\sqrt{2}} \lim _{j \rightarrow \infty} B_{j}$ and $X=S S^{T}$.

Solving Lyapunov Equations with the Matrix Sign Function Method Factored form
 [B./Quintana-Ortí '97]

Factored sign function iteration for $A\left(S S^{T}\right)+\left(S S^{T}\right) A^{T}+B B^{T}=0$

$$
\begin{array}{ll}
A_{0} \leftarrow A, & A_{j+1} \leftarrow \frac{1}{2}\left(A_{j}+A_{j}^{-1}\right), \\
B_{0} \leftarrow B, & B_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{j} & A_{j}^{-1} B_{j}
\end{array}\right],
\end{array} \quad j=0,1,2, \ldots .
$$

Remarks:

- To get both Gramians, run in parallel

$$
C_{j+1} \leftarrow \frac{1}{\sqrt{2}}\left[\begin{array}{c}
C_{j} \\
C_{j} A_{j}^{-1}
\end{array}\right]
$$

- To avoid growth in numbers of columns of B_{j} (or rows of C_{j}): column compression by RRLQ or truncated SVD.
- Several options to incorporate scaling, e.g., scale " A "-iteration only.
- Simple stopping criterion: $\left\|A_{j}+I_{n}\right\|_{F} \leq$ tol.

0000000000000000000000000000000

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:
Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea: Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.

AD Iteration

If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} /\right) u_{k-\frac{1}{2}} & =\left(p_{k} l-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} l-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

Numerical Methods for Solving Lyapunov Equations The ADI Method

Recall Peaceman Rachford ADI:

Consider $A u=s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^{n}$. ADI Iteration Idea:
Decompose $A=H+V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$
\begin{aligned}
& (H+p l) v=r \\
& (V+p l) w=t
\end{aligned}
$$

can be solved easily/efficiently.

ADI Iteration

If H, V spd $\Rightarrow \exists p_{k}, k=1,2, \ldots$ such that

$$
\begin{aligned}
u_{0} & =0 \\
\left(H+p_{k} I\right) u_{k-\frac{1}{2}} & =\left(p_{k} I-V\right) u_{k-1}+s \\
\left(V+p_{k} I\right) u_{k} & =\left(p_{k} I-H\right) u_{k-\frac{1}{2}}+s
\end{aligned}
$$

converges to $u \in \mathbb{R}^{n}$ solving $A u=s$.

Numerical Methods for Solving Lyapunov Equations

The Lyapunov operator

$$
\mathcal{L}: \quad X \quad \mapsto \quad A X+X A^{T}
$$

can be decomposed into the linear operators

$$
\mathcal{L}_{H}: X \mapsto A X, \quad \mathcal{L}_{V}: X \mapsto X A^{T} .
$$

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation

$$
\begin{aligned}
X_{0} & =0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{1}} & =-W-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T} & =-W-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right) .
\end{aligned}
$$

0000000000000000000000000000000

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\text {max }}$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{\top}, k=0, \ldots, k_{\max }$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{\top}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

\rightsquigarrow low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\max }$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{T}, k=0, \ldots, k_{\text {max }}$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{T}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

\rightsquigarrow low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

Numerical Methods for Solving Lyapunov Equations Low-Rank ADI

Consider $A X+X A^{T}=-B B^{T}$ for stable $A ; B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation

For $k=1, \ldots, k_{\max }$

$$
\begin{array}{ccc}
X_{0} & = & 0 \\
\left(A+p_{k} I\right) X_{k-\frac{1}{2}} & = & -B B^{T}-X_{k-1}\left(A^{T}-p_{k} I\right) \\
\left(A+p_{k} I\right) X_{k}^{T^{2}} & = & -B B^{T}-X_{k-\frac{1}{2}}^{T}\left(A^{T}-p_{k} I\right)
\end{array}
$$

Rewrite as one step iteration and factorize $X_{k}=Z_{k} Z_{k}^{T}, k=0, \ldots, k_{\text {max }}$

$$
\begin{aligned}
Z_{0} Z_{0}^{T}= & 0 \\
Z_{k} Z_{k}^{T}= & -2 p_{k}\left(A+p_{k} I\right)^{-1} B B^{T}\left(A+p_{k} I\right)^{-T} \\
& +\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1} Z_{k-1}^{T}\left(A-p_{k} I\right)^{T}\left(A+p_{k} I\right)^{-T}
\end{aligned}
$$

... \rightsquigarrow low-rank Cholesky factor ADI
[Penzl '97/'00, Li/White '99/'02, B./Li/Penzl '99/'08, Gugercin/Sorensen/Antoulas '03]

0,000000000000000000000000000000

Solving Large-Scale Matrix Equations

 Numerical Methods for Solving Lyapunov Equations$$
Z_{k}=\left[\sqrt{-2 p_{k}}\left(A+p_{k} I\right)^{-1} B,\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1}\right]
$$

[Penzl '00]
Observing that $\left(A-p_{i} l\right),\left(A+p_{k} l\right)^{-1}$ commute, we rewrite $Z_{k_{\max }}$ as
$Z_{k_{\max }}=\left[z_{k_{\max }}, P_{k_{\max }-1} z_{k_{\max }}, P_{k_{\max }-2}\left(P_{k_{\max }-1} z_{k_{\max }}\right), \ldots, P_{1}\left(P_{2} \ldots P_{k_{\max }-1} z_{k_{\max }}\right)\right]$,
where

$$
z_{k_{\max }}=\sqrt{-2 p_{k_{\max }}}\left(A+p_{k_{\max }} I\right)^{-1} B
$$

and

$$
P_{i}:=\frac{\sqrt{-2 p_{i}}}{\sqrt{-2 p_{i+1}}}\left[I-\left(p_{i}+p_{i+1}\right)\left(A+p_{i} I\right)^{-1}\right]
$$

Solving Large-Scale Matrix Equations Numerical Methods for Solving Lyapunov Equations

$$
Z_{k}=\left[\sqrt{-2 p_{k}}\left(A+p_{k} I\right)^{-1} B,\left(A+p_{k} I\right)^{-1}\left(A-p_{k} I\right) Z_{k-1}\right]
$$

[Penzl '00]
Observing that $\left(A-p_{i} I\right),\left(A+p_{k} I\right)^{-1}$ commute, we rewrite $Z_{k_{\max }}$ as

$$
Z_{k_{\max }}=\left[z_{k_{\max }}, P_{k_{\max }-1} z_{k_{\max }}, P_{k_{\max }-2}\left(P_{k_{\max }-1} z_{k_{\max }}\right), \ldots, P_{1}\left(P_{2} \ldots P_{k_{\max }-1} z_{k_{\max }}\right)\right]
$$

[LI/White '02]
where

$$
z_{k_{\max }}=\sqrt{-2 p_{k_{\max }}}\left(A+p_{k_{\max }} I\right)^{-1} B
$$

and

$$
P_{i}:=\frac{\sqrt{-2 p_{i}}}{\sqrt{-2 p_{i+1}}}\left[I-\left(p_{i}+p_{i+1}\right)\left(A+p_{i} I\right)^{-1}\right] .
$$

Numerical Methods for Solving Lyapunov Equations

 Lyapunov equation $0=A X+X A^{T}+B B^{T}$.Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \text { re } p_{1}}\left(A+p_{1} /\right)^{-1} B, \quad Z_{1} \leftarrow V_{1} \\
& \text { FOR } k=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{r e}{r e} p_{k}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Z_{k} \leftarrow\left[Z_{k-1} \quad V_{k}\right] \\
& Z_{k} \leftarrow \operatorname{rrlq}\left(Z_{k}, \tau\right) \quad \text { column compression }
\end{aligned}
$$

At convergence, $Z_{k_{\max }} Z_{k_{\max }}^{\top} \approx X$, where (without column compression)

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Methods for Solving Lyapunov Equations

 Lyapunov equation $0=A X+X A^{T}+B B^{T}$.Algorithm [Penzl '97/'00, Li/White '99/'02, B. 04, B./Li/Penzl '99/'08]

$$
\begin{aligned}
& V_{1} \leftarrow \sqrt{-2 \text { re } p_{1}}\left(A+p_{1} I\right)^{-1} B, \quad Z_{1} \leftarrow V_{1} \\
& \text { FOR } k=2,3, \ldots
\end{aligned}
$$

$$
\begin{aligned}
& V_{k} \leftarrow \sqrt{\frac{\text { re } p_{k}}{\text { re } p_{k-1}}}\left(V_{k-1}-\left(p_{k}+\overline{p_{k-1}}\right)\left(A+p_{k} I\right)^{-1} V_{k-1}\right) \\
& Z_{k} \leftarrow\left[Z_{k-1} \quad V_{k}\right] \\
& Z_{k} \leftarrow \operatorname{rrlq}\left(Z_{k}, \tau\right) \quad \text { column compression }
\end{aligned}
$$

At convergence, $Z_{k_{\max }} Z_{k_{\max }}^{T} \approx X$, where (without column compression)

$$
\left.z_{k_{\max }}=\left[\begin{array}{lll}
v_{1} & \ldots & v_{k_{\max }}
\end{array}\right], \quad v_{k}=\right] \in \mathbb{C}^{n \times m} .
$$

Note: Implementation in real arithmetic possible by combining two steps [B./Li/Penzl '99/'08] or using new idea employing the relation of 2 consecutive complex factors [B./Kürschner/Saak '11].

Numerical Results for ADI

Optimal Cooling of Steel Profiles

- Mathematical model: boundary control for linearized 2D heat equation.

$$
\begin{aligned}
c \cdot \rho \frac{\partial}{\partial t} x & =\lambda \Delta x, \quad \xi \in \Omega \\
\lambda \frac{\partial}{\partial n} x & =\kappa\left(u_{k}-x\right), \quad \xi \in \Gamma_{k}, 1 \leq k \leq 7 \\
\frac{\partial}{\partial n} x & =0, \quad \xi \in \Gamma_{7} . \\
\Longrightarrow m=7, q & =6 .
\end{aligned}
$$

- FEM Discretization, different models for initial mesh ($n=371$),
$1,2,3,4$ steps of mesh refinement \Rightarrow
$n=1357,5177,20209,79841$.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, SaAk 2003.

Numerical Results for ADI

Optimal Cooling of Steel Profiles

- Solve dual Lyapunov equations needed for balanced truncation, i.e.,

$$
A P M^{T}+M P A^{T}+B B^{T}=0, \quad A^{T} Q M+M^{T} Q A+C^{T} C=0
$$

for $n=79,841$.

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude, no column compression performed.
- No factorization of mass matrix required.
- Computations done on Core2Duo at 2.8 GHz with 3GB RAM and 32Bit-MATLAB.

CPU times: $626 / 356 \mathrm{sec}$.

Numerical Results for ADI

Scaling

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Numerical Results for ADI

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_11, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

CPU Times

n	M.E.S.S. ${ }^{1}(\mathrm{C})$	LyaPack	M.E.S.S. (MATLAB)
100	0.023	0.124	0.158
625	0.042	0.104	0.227
2,500	0.159	0.702	0.989
10,000	0.965	6.22	5.644
40,000	11.09	71.48	34.55
90,000	34.67	418.5	90.49
160,000	109.3	out of memory	219.9
250,000	193.7	out of memory	403.8
562,500	930.1	out of memory	1216.7
$1,000,000$	2220.0	out of memory	2428.6

Numerical Results for ADI

Scaling

Computations by Martin Köhler '10

- $A \in \mathbb{R}^{n \times n} \equiv$ FDM matrix for 2D heat equation on $[0,1]^{2}$ (LyAPACK benchmark demo_l1, $m=1$).
- 16 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of largest/smallest magnitude.
- Computations on 2 dual core Intel Xeon 5160 with 16 GB RAM using M.E.S.S. (http://svncsc.mpi-magdeburg.mpg.de/trac/messtrac/).

Note: for $n=1,000,000$, first sparse LU needs $\sim 1,100$ sec., using UMFPACK this reduces to 30 sec .

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
© Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(0) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.

- Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Sadd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini $\left.{ }^{\circ} 07\right]$,

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right) .
$$

- Rational Krylov [Druskin/Simoncini '11].

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(0) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.

- Use $X \approx Z \hat{X} Z^{\top}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[SaAd '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini '07],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

- Rational Krylov [Druskin/Simoncini '11].

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$

Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(0) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.

- Use $X \approx Z \hat{X} Z^{\top}$.

Examples:

- Krylov subspace methods, i.e., for $m=1$:

$$
\mathcal{Z}=\mathcal{K}(A, B, r)=\operatorname{span}\left\{B, A B, A^{2} B, \ldots, A^{r-1} B\right\}
$$

[Saad '90, Jaimoukha/Kasenally '94, Jbilou '02-'08].

- K-PIK [Simoncini ${ }^{\text {'07 }}$],

$$
\mathcal{Z}=\mathcal{K}(A, B, r) \cup \mathcal{K}\left(A^{-1}, B, r\right)
$$

- Rational Krylov [Druskin/Simoncini '11].

Factored Galerkin-ADI Iteration

Lyapunov equation $0=A X+X A^{T}+B B^{T}$
Projection-based methods for Lyapunov equations with $A+A^{T}<0$:
(1) Compute orthonormal basis range $(Z), Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^{n}$, $\operatorname{dim} \mathcal{Z}=r$.
(2) Set $\hat{A}:=Z^{\top} A Z, \hat{B}:=Z^{\top} B$.
(3) Solve small-size Lyapunov equation $\hat{A} \hat{X}+\hat{X} \hat{A}^{T}+\hat{B} \hat{B}^{T}=0$.
(9) Use $X \approx Z \hat{X} Z^{T}$.

Examples:

- ADI subspace [B./R.-C. Li/Truhar '08]:

$$
\mathcal{Z}=\operatorname{colspan}\left[\begin{array}{lll}
V_{1}, & \ldots, & V_{r}
\end{array}\right]
$$

Note:
(1) ADI subspace is rational Krylov subspace [J.-R. Li/White '02].
(2) Similar approach: ADI-preconditioned global Arnoldi method [Jbilou '08].

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, q=6$.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).
Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations Numerical examples for Galerkin-ADI

FEM semi-discretized control problem for parabolic PDE:

- optimal cooling of rail profiles,
- $n=20,209, m=7, q=6$.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).
Computations by Jens Saak '10.

Numerical Methods for Solving Lyapunov Equations

Numerical examples for Galerkin-ADI: optimal cooling of rail profiles, $n=79,841$.

M.E.S.S. w/o Galerkin projection and column compression

Rank of solution factors: 532 / 426

M.E.S.S. with Galerkin projection and column compression

Rank of solution factors: 269 / 205

Solving Large-Scale Matrix Equations

Numerical example for BT: Optimal Cooling of Steel Profiles

$n=1,357$, Absolute Error

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

Solving Large-Scale Matrix Equations

Numerical example for BT: Optimal Cooling of Steel Profiles

$n=1,357$, Absolute Error

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

$n=79,841$, Absolute Error

- BT model computed using M.E.S.S. in MATLAB,
- dualcore, computation time: $<10 \mathrm{~min}$.

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.
- Coriolis forces induce motion of wings out of wafer plane yielding sensor data.
- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Frequency Repsonse Analysis

Solving Large-Scale Matrix Equations

Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
$\rightsquigarrow n=34,722, m=1, q=12$.
- Reduced model computed using SpaRed, $r=30$.

Frequency Repsonse Analysis

Hankel Singular Values

Solving Large-Scale Algebraic Riccati Equations

Theorem

Consider the (continuous-time) algebraic Riccati equation (ARE)

$$
0=\mathcal{R}(X)=C^{T} C+A^{T} X+X A-X B B^{T} X
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n},(A, B)$ stabilizable, (A, C) detectable. Then:
(a) There exists a unique stabilizing $X_{*} \in\left\{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X)=0\right\}$, i.e., $\Lambda\left(A-B B^{T} X_{*}\right) \in \mathbb{C}^{-}$.
(b) $X_{*}=X_{*}^{\top} \geq 0$ and $X_{*} \geq X$ for all $X \in\left\{X \in \mathbb{R}^{n \times n} \mid \mathcal{R}(X)=0\right\}$.
(c) If (A, C) observable, then $X_{*}>0$.
(d) $\operatorname{span}\left\{\left[\begin{array}{c}I_{n} \\ -X_{*}\end{array}\right]\right\}$ is the unique invariant subspace of the Hamiltonian matrix

$$
H=\left[\begin{array}{cc}
A & B B^{T} \\
C^{T} C & -A^{T}
\end{array}\right]
$$

corresponding to $\Lambda(H) \cap \mathbb{C}^{-}$.

Solving Large-Scale Algebraic Riccati Equations

Numerical Methods (incomplete list)

- Invariant subspace methods (\rightsquigarrow eigenproblem for Hamiltonian matrix):
- Schur vector method (care)
- Hamiltonian SR algorithm
- Symplectic URV-based method

> [B./Mehrmann/Xu '97/'98, Chu/Liu/Mehrmann '07]

- Spectral projection methods
- Sign function method
- Disk function method
[Roberts '71, Byers '87] [Bai/Demmel/Gu '94, B. '97]
- (rational, global) Krylov subspace techniques
[Jaimoukha/Kasenally '94, Jbilou '03/'06, Heyouni/Jbilou '09]
- Newton's method
- Kleinman iteration
[Kleinman '68]
- Line search acceleration
[B./Byers '98]
- Newton-ADI
[B./J.-R. Li/Penzl '99/'08]
- Inexact Newton
[Feitzinger/Hylla/Sachs '09,B./Heinkenschloss/SaAK/Weichelt '15]

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

 [B./Köhler/Saak '08-]- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Solving Large-Scale Matrix Equations

Software

Lyapack

MATLAB toolbox for solving

- Lyapunov equations and algebraic Riccati equations,
- model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. - Matrix Equations Sparse Solvers

 [B./Köhler/Saak '08-]- Extended and revised version of Lyapack.
- Includes solvers for large-scale differential Riccati equations (based on Rosenbrock and BDF methods).
- Many algorithmic improvements:
- new ADI parameter selection,
- column compression based on RRQR,
- more efficient use of direct solvers,
- treatment of generalized systems without factorization of the mass matrix,
- new ADI versions avoiding complex arithmetic etc.
- C and MATLAB versions.

Topics Not Covered

- Special methods for second-order (mechanical) systems.
- Extensions to bilinear and stochastic systems.
- Balanced truncation for discrete-time systems.
- Extensions to descriptor systems $E \dot{x}=A x+B u, E$ singular.
- Frequency-limited/-weighted balanced truncation.
- Application to parametric model reduction:

$$
\dot{x}=A(p) x+B(p) u, \quad y=C(p) x,
$$

where $p \in \mathbb{R}^{d}$ is a free parameter vector; parameters should be preserved in the reduced-order model.

Further Reading - Balanced Truncation

B. C. Moore.Principal component analysis in linear systems: controllability, observability, and model reduction.
ieee Trans. Autom. Control, AC-26(1):17-32, 1981D. F. Enns.

Model reduction with balanced realizations: An error bound and a frequency weighted generalization.
In Proc. 23rd IEEE Conf. Decision Contr., vol. 23, pp. 127-132, 1984.Y. Liu and B. D. O. Anderson.

Controller reduction via stable factorization and balancing.
Internat. J. Control, 44:507-531, 1986.G. Obinata and B.D.O. Anderson.

Model Reduction for Control System Design.
Springer-Verlag, London, UK, 2001P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí.

State-space truncation methods for parallel model reduction of large-scale systems.
Parallel Comput., 29:1701-1722, 2003.P. Benner, V. Mehrmann, and D. Sorensen (editors).

Dimension Reduction of Large-Scale Systems.
Lecture Notes in Computational Science and Engineering, Vol. 45,
Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

A.C. Antoulas.

Approximation of Large-Scale Dynamical Systems.
SIAM Publications, Philadelphia, PA, 2005
(8) W.H.A. Schilders, H.A. van der Vorst, and J. Rommes (editors),

Model Order Reduction: Theory, Research Aspects and Applications.
Mathematics in Industry, Vol. 13,
Springer-Verlag, Berlin/Heidelberg, 2008.
(9) U. Baur, P. Benner, and L. Feng.

Model Order Reduction for Linear and Nonlinear Systems: a System-Theoretic Perspective
Arch. Comp. Meth. Engrg., 21(4):331-358, 2014.
DOI: 10.1007/s11831-014-9111-2.

Further Reading - Matrix Equations

V. Mehrmann.The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution.
Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg, July 1991

P. Lancaster and L. Rodman.

The Algebraic Riccati Equation.
Oxford University Press, Oxford, 1995.

P. Benner.

Computational methods for linear-quadratic optimization
Rendiconti del Circolo Matematico di Palermo, Supplemento, Serie II, 58:21-56, 1999.
(4) T. Penzl.

Lyapack Users Guide.
Technical Report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU
Chemnitz, 09107 Chemnitz, FRG, 2000.
Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html.

H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank.

Matrix Riccati Equations in Control and Systems Theory.
Birkhäuser, Basel, Switzerland, 2003.P. Benner.

Solving large-scale control problems.
IEEE Control Systems Magazine, 24(1):44-59, 2004.
D. Bini, B. Iannazzo, and B. Meini.

Numerical Solution of Algebraic Riccati Equations.
SIAM, Philadelphia, PA, 2012.P. Benner and J. Saak.

Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey.
GAMM-Mitteilungen, 36(1):32-52, 2013.V. Simoncini.

Computational methods for linear matrix equations (survey article).
March 2013.
http://www.dm.unibo.it/-simoncin/matrixeq.pdf.

[^0]: Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore'sLaw_-_2011.svg

[^1]: Corollary
 A, B Hurwitz $=\Longrightarrow$ Sylvester equation has unique solution.

[^2]: Corollary
 A, B Hurwitz \Longrightarrow Sylvester equation has unique solution.

[^3]: Example
 $n=m=1,000 \Rightarrow$ Gaussian elimination on an Intel core i7 (Westmere, 6 cores, $3.46 \mathrm{GHz} \rightsquigarrow 83.2$ GFLOP peak) would take >94 DAYS and 7.3 TB of memory!

