Model Order Reduction via System Balancing

Exercise 1 (Controllability of dynamical systems)
Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Show that the following statements are equivalent:
a) the pair (A, B) is controllable
(i.e. for all times $t_{0}, t_{1} \in \mathbb{R}, t_{0}<t_{1}$, and states $x_{0}, x_{1} \in \mathbb{R}^{n}$, there exists $u(t)$ such that the solution of the initial value problem $\dot{x}(t)=A x(t)+B u(t), x\left(t_{0}\right)=x_{0}$, satisfies $\left.x\left(t_{1}\right)=x_{1}\right)$,
b) the controllability matrix $\mathcal{C}=\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right] \in \mathbb{R}^{n \times n m}$ has full rank n,
c) the controllability Gramian

$$
P(t)=\int_{0}^{t} e^{A \tau} B B^{T} e^{A^{T} \tau} \mathrm{~d} \tau
$$

is positive definite for all $t>0$.

Exercise 2 (The (infinite) controllability Gramian and a Lyapunov equation)
Let $A \in \mathbb{R}^{n \times n}$ be stable and $Q \in \mathbb{R}^{n \times n}$. Prove that

$$
X=\int_{0}^{\infty} e^{A t} Q e^{A^{T} t} \mathrm{~d} t
$$

is the unique solution of the Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

Exercise 3 (Stability, controllability, and the Lyapunov equation)
Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Prove that, of the following three statements, any two imply the third:
a) A is a stable matrix,
b) the pair (A, B) is controllable,
c) the Lyapunov equation $A P+P A^{T}+B B^{T}=0$ has a positive definite solution P.

Exercise 4 (Properties of the matrix sign function)
For $Z \in \mathbb{C}^{n \times n}$ with no eigenvalues on the imaginary axis and a Jordan canonical form

$$
Z=S\left[\begin{array}{ll}
J^{+} & \\
& J^{-}
\end{array}\right] S^{-1},
$$

where $J^{+} \in \mathbb{C}^{k \times k}$ and $J^{-} \in \mathbb{C}^{(n-k) \times(n-k)}$ respectively have eigenvalues in \mathbb{C}_{+}and \mathbb{C}_{-}, we define the matrix sign function as

$$
Z=S\left[\begin{array}{ll}
I_{k} & \\
& -I_{n-k}
\end{array}\right] S^{-1}
$$

Show that:
a) the matrix sign function is well-defined,
b) $\operatorname{sign}\left(T^{-1} Z T\right)=T^{-1} \operatorname{sign}(Z) T$ for all nonsingular $T \in \mathbb{C}^{n \times n}$,
c) if Z is stable, then $\operatorname{sign}(Z)=-I_{n}$ and $\operatorname{sign}(-Z)=I_{n}$,
d) $\operatorname{sign}(Z)^{2}=I_{n}$, i.e. $\operatorname{sign}(Z)$ is a square root of the identity matrix,
e) the Newton iteration $Z_{0}=Z, Z_{i+1}=\frac{1}{2}\left(Z_{i}+Z_{i}^{-1}\right), i=0,1,2, \ldots$, is a Newton iteration applied to the function $F(X)=X^{2}-I$.

Exercise 5 (Solving Sylvester equations via the matrix sign function)
Consider the Sylvester equation

$$
\begin{equation*}
A X+X B+C=0 \tag{1}
\end{equation*}
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$, and $C \in \mathbb{R}^{n \times m}$. Assume that A and B are stable matrices and that X is the solution of the equation (1).
a) Show that

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]\right)=\left[\begin{array}{cc}
-I_{n} & 2 X \\
0 & I_{m}
\end{array}\right]
$$

Hint: Compute $T^{-1}\left[\begin{array}{cc}A & C \\ 0 & -B\end{array}\right] T$, for $T=\left[\begin{array}{cc}I_{n} & X \\ 0 & I_{m}\end{array}\right]$.
b) Show that instead of iterating on $\left[\begin{array}{cc}A & C \\ 0 & -B\end{array}\right]$, one can compute X via an iteration on A, B, C.

Exercise 6 (Implementing a Lyapunov equation solver)
Our goal here is to implement a solver, using matrix sign function Newton iteration, for the Lyapunov equation

$$
\begin{equation*}
A X+X A^{T}+W=0 \tag{2}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ is a stable matrix.
a) Derive the iteration method

$$
\begin{aligned}
A_{0} & =A, & A_{i+1} & =\frac{1}{2}\left(A_{i}+A_{i}^{-1}\right) \\
W_{0} & =W, & W_{i+1} & =\frac{1}{2}\left(W_{i}+A_{i}^{-1} W_{i} A_{i}^{-T}\right)
\end{aligned}
$$

for the equation (2) using the solution of the Exercise 5 b). Show that $A_{i} \rightarrow-I_{n}$ and $W_{i} \rightarrow 2 X$.
b) Implement a function lyap_sgn, applying the above iteration, with the matrices A and W, the maximum number of iterations maxit, and the tolerance tol for the stopping criterion $\left\|A_{i}+I_{n}\right\|_{F}<$ tol as inputs.
c) Test your implementation on random examples by computing the relative error

$$
\frac{\left\|A X+X A^{T}+W\right\|_{F}}{\|W\|_{F}}
$$

and plotting how $\left\|A_{i}+I_{n}\right\|_{F}$ varies across iterations. Check if the approximate solution you find is symmetric (e.g. by computing $\left\|X-X^{T}\right\|_{F}$) for symmetric W.

Exercise 7 (Model reduction by balanced truncation)
Here we apply the balanced truncation method to the Clamped Beam model from the NICONET benchmark collection (you need to download beam.mat from [1]).
a) Compute the controllability and observability Gramians by solving the Lyapunov equations

$$
\begin{aligned}
& A P+P A^{T}+B B^{T}=0 \\
& A^{T} Q+Q A+C^{T} C=0
\end{aligned}
$$

using the function lyap_sgn you implemented in the previous Exercise.
b) Compute factorizations $P=S^{T} S$ and $Q=R^{T} R$.
c) Compute the singular value decomposition $S R^{T}=U \Sigma V^{T}$.
d) Plot the Hankel singular values.
e) Find the reduced order model $\left(A_{r}, B_{r}, C_{r}\right)=\left(W_{r}^{T} A V_{r}, W_{r}^{T} B, C V_{r}\right)$, where

$$
\begin{aligned}
V_{r} & =S^{T} U(:, 1: r) \Sigma(1: r, 1: r)^{-\frac{1}{2}}, \\
W_{r} & =R^{T} V(:, 1: r) \Sigma(1: r, 1: r)^{-\frac{1}{2}},
\end{aligned}
$$

for some r.
f) Draw the log-log plots of $\omega \mapsto|H(i \omega)|$ and $\omega \mapsto\left|H_{r}(i \omega)\right|$, where

$$
\begin{aligned}
H(s) & =C\left(s I_{n}-A\right)^{-1} B \\
H_{r}(s) & =C_{r}\left(s I_{r}-A_{r}\right)^{-1} B_{r}
\end{aligned}
$$

are the transfer functions of the original and reduced model. Use 1000 logarithmically distributed sample points over the frequency interval $\omega \in\left[10^{-2}, 10^{4}\right]$.
g) Draw the $\log -\log$ plot of $\omega \mapsto\left|H(i \omega)-H_{r}(i \omega)\right|$, same as in f), with a horizontal line for the upper bound of the \mathcal{H}_{∞}-error using Hankel singular values.

Exercise 8 (Balancing-free square root (BFSR) method)

For numerical reasons, the balancing-free square root (BFSR) algorithm is preferred to the method used in the previous Exercise. The difference is in the part e).
a) Compute the projection matrices

$$
V_{r}=P_{1} \text { and } W_{r}=Q_{1}\left(P_{1}^{T} Q_{1}\right)^{-1}
$$

where

$$
S^{T} U_{1}=P_{1} \widehat{R} \text { and } R^{T} V_{1}=Q_{1} \widetilde{R}
$$

with $P_{1}, Q_{1} \in \mathbb{R}^{n \times r}$ orthogonal and $\widehat{R}, \widetilde{R} \in \mathbb{R}^{r \times r}$ upper-triangular.
b) Show that the reduced order system is equivalent to a balanced system and that it satisfies the same error bound as the one obtained by the standard square root balanced truncation method.

Exercise 9 (Low-rank Lyapunov equation solver)

It is possible to combine parts a) and b) in Exercise 7.
a) For the Lyapunov equation

$$
A X+X A^{T}+B B^{T}=0
$$

derive the iteration method

$$
\begin{array}{ll}
A_{0}=A, & A_{i+1}=\frac{1}{2}\left(A_{i}+A_{i}^{-1}\right) \\
B_{0}=B, & B_{i+1}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
B_{i} & A_{i}^{-1} B_{i}
\end{array}\right]
\end{array}
$$

by setting $W_{i}=B_{i} B_{i}^{T}$ in Exercise 6 a).
b) Since B_{i+1} has the twice the number of column as B_{i}, it is necessary to include column compression in the iterations. Implement a function col_comp that will perform this for an arbitrary matrix, using rank-revealing LQ decomposition or SVD, with specified error tolerance.
c) Implement a Lyapunov equation solver lyap_sgn_fac, using the above iterations with column compression.

Exercise 10 (Solving algebraic Riccati equations via the matrix sign function)
Motivated by balancing-related methods such as LQG balanced truncation, let us consider the algebraic Riccati equation

$$
A X+X A^{T}-X F X+G=0
$$

where $A \in \mathbb{R}^{n \times n}$ and $F=F^{T}, G=G^{T} \in \mathbb{R}^{n \times n}$ are symmetric positive semi-definite matrices and (A, F) is stabilizable. Let

$$
M=\left[\begin{array}{cc}
A & G \\
F & -A^{T}
\end{array}\right]
$$

and assume that the matrix sign function of M is partitioned as

$$
\operatorname{sign}(M)=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]
$$

Show that

$$
\left[\begin{array}{c}
I_{n}-Z_{11} \\
Z_{21}
\end{array}\right] X=\left[\begin{array}{c}
Z_{12} \\
I_{n}-Z_{22}
\end{array}\right] .
$$

Hint: First show that

$$
M=\left[\begin{array}{cc}
I_{n}-X Q & X \\
-Q & I_{n}
\end{array}\right]\left[\begin{array}{cc}
A-X F & 0 \\
0 & -(A-X F)^{T}
\end{array}\right]\left[\begin{array}{cc}
I_{n}-X Q & X \\
-Q & I_{n}
\end{array}\right]^{-1},
$$

where Q solves $(A-X F)^{T} Q+Q(A-X F)+F=0$. Then make use of the properties of the matrix sign function.

References

[1] http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

