
The third International School on Model Reduction for Dynamical Control Systems 5�9 October 2015

Max Planck Institute for Dynamics of Complex Technical Systems Prof. Dr. Peter Benner
Computational Methods in Systems and Control Theory Petar Mlinari¢

Model Order Reduction via System Balancing

Exercise 1 (Controllability of dynamical systems)
Let A ∈ Rn×n and B ∈ Rn×m. Show that the following statements are equivalent:

a) the pair (A,B) is controllable

(i.e. for all times t0, t1 ∈ R, t0 < t1, and states x0, x1 ∈ Rn, there exists u(t) such that the solution of the
initial value problem ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, satis�es x(t1) = x1),

b) the controllability matrix C =
[
B AB · · · An−1B

]
∈ Rn×nm has full rank n,

c) the controllability Gramian

P (t) =

t∫
0

eAτBBT eA
T τ dτ

is positive de�nite for all t > 0.

Exercise 2 (The (in�nite) controllability Gramian and a Lyapunov equation)
Let A ∈ Rn×n be stable and Q ∈ Rn×n. Prove that

X =

∞∫
0

eAtQeA
T t dt

is the unique solution of the Lyapunov equation

AX +XAT +Q = 0.

Exercise 3 (Stability, controllability, and the Lyapunov equation)
Let A ∈ Rn×n and B ∈ Rn×m. Prove that, of the following three statements, any two imply the third:

a) A is a stable matrix,

b) the pair (A,B) is controllable,

c) the Lyapunov equation AP + PAT +BBT = 0 has a positive de�nite solution P .

Exercise 4 (Properties of the matrix sign function)
For Z ∈ Cn×n with no eigenvalues on the imaginary axis and a Jordan canonical form

Z = S

[
J+

J−

]
S−1,

where J+ ∈ Ck×k and J− ∈ C(n−k)×(n−k) respectively have eigenvalues in C+ and C−, we de�ne the matrix
sign function as

Z = S

[
Ik
−In−k

]
S−1.

Show that:

a) the matrix sign function is well-de�ned,

b) sign(T−1ZT ) = T−1 sign(Z)T for all nonsingular T ∈ Cn×n,
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c) if Z is stable, then sign(Z) = −In and sign(−Z) = In,

d) sign(Z)2 = In, i.e. sign(Z) is a square root of the identity matrix,

e) the Newton iteration Z0 = Z, Zi+1 = 1
2 (Zi + Z−1i ), i = 0, 1, 2, . . ., is a Newton iteration applied to the

function F (X) = X2 − I.

Exercise 5 (Solving Sylvester equations via the matrix sign function)
Consider the Sylvester equation

AX +XB + C = 0, (1)

with A ∈ Rn×n, B ∈ Rm×m, and C ∈ Rn×m. Assume that A and B are stable matrices and that X is the
solution of the equation (1).

a) Show that

sign

([
A C
0 −B

])
=

[
−In 2X

0 Im

]
.

Hint: Compute T−1
[
A C
0 −B

]
T , for T =

[
In X
0 Im

]
.

b) Show that instead of iterating on

[
A C
0 −B

]
, one can compute X via an iteration on A,B,C.

Exercise 6 (Implementing a Lyapunov equation solver)
Our goal here is to implement a solver, using matrix sign function Newton iteration, for the Lyapunov equation

AX +XAT +W = 0, (2)

where A ∈ Rn×n is a stable matrix.

a) Derive the iteration method

A0 = A, Ai+1 =
1

2

(
Ai +A−1i

)
,

W0 = W, Wi+1 =
1

2

(
Wi +A−1i WiA

−T
i

)
,

for the equation (2) using the solution of the Exercise 5 b). Show that Ai → −In and Wi → 2X.

b) Implement a function lyap_sgn, applying the above iteration, with the matrices A and W , the maximum
number of iterations maxit, and the tolerance tol for the stopping criterion ‖Ai + In‖F < tol as inputs.

c) Test your implementation on random examples by computing the relative error

‖AX +XAT +W‖F
‖W‖F

and plotting how ‖Ai + In‖F varies across iterations. Check if the approximate solution you �nd is
symmetric (e.g. by computing ‖X −XT ‖F ) for symmetric W .

Exercise 7 (Model reduction by balanced truncation)
Here we apply the balanced truncation method to the Clamped Beam model from the NICONET benchmark
collection (you need to download beam.mat from [1]).

a) Compute the controllability and observability Gramians by solving the Lyapunov equations

AP + PAT +BBT = 0,

ATQ+QA+ CTC = 0,

using the function lyap_sgn you implemented in the previous Exercise.
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b) Compute factorizations P = STS and Q = RTR.

c) Compute the singular value decomposition SRT = UΣV T .

d) Plot the Hankel singular values.

e) Find the reduced order model (Ar, Br, Cr) = (WT
r AVr,W

T
r B,CVr), where

Vr = STU(:, 1 : r)Σ(1 : r, 1 : r)−
1
2 ,

Wr = RTV (:, 1 : r)Σ(1 : r, 1 : r)−
1
2 ,

for some r.

f) Draw the log-log plots of ω 7→ |H(iω)| and ω 7→ |Hr(iω)|, where

H(s) = C(sIn −A)−1B,

Hr(s) = Cr(sIr −Ar)−1Br,

are the transfer functions of the original and reduced model. Use 1000 logarithmically distributed sample
points over the frequency interval ω ∈ [10−2, 104].

g) Draw the log-log plot of ω 7→ |H(iω)−Hr(iω)|, same as in f), with a horizontal line for the upper bound
of the H∞-error using Hankel singular values.

Exercise 8 (Balancing-free square root (BFSR) method)
For numerical reasons, the balancing-free square root (BFSR) algorithm is preferred to the method used in the
previous Exercise. The di�erence is in the part e).

a) Compute the projection matrices

Vr = P1 and Wr = Q1

(
PT1 Q1

)−1
,

where

STU1 = P1R̂ and RTV1 = Q1R̃,

with P1, Q1 ∈ Rn×r orthogonal and R̂, R̃ ∈ Rr×r upper-triangular.

b) Show that the reduced order system is equivalent to a balanced system and that it satis�es the same error
bound as the one obtained by the standard square root balanced truncation method.

Exercise 9 (Low-rank Lyapunov equation solver)
It is possible to combine parts a) and b) in Exercise 7.

a) For the Lyapunov equation

AX +XAT +BBT = 0,

derive the iteration method

A0 = A, Ai+1 =
1

2

(
Ai +A−1i

)
,

B0 = B, Bi+1 =
1√
2

[
Bi A−1i Bi

]
,

by setting Wi = BiB
T
i in Exercise 6 a).

b) Since Bi+1 has the twice the number of column as Bi, it is necessary to include column compression
in the iterations. Implement a function col_comp that will perform this for an arbitrary matrix, using
rank-revealing LQ decomposition or SVD, with speci�ed error tolerance.

c) Implement a Lyapunov equation solver lyap_sgn_fac, using the above iterations with column compres-
sion.
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Exercise 10 (Solving algebraic Riccati equations via the matrix sign function)
Motivated by balancing-related methods such as LQG balanced truncation, let us consider the algebraic Riccati
equation

AX +XAT −XFX +G = 0,

where A ∈ Rn×n and F = FT , G = GT ∈ Rn×n are symmetric positive semi-de�nite matrices and (A,F ) is
stabilizable. Let

M =

[
A G
F −AT

]
and assume that the matrix sign function of M is partitioned as

sign(M) =

[
Z11 Z12

Z21 Z22

]
.

Show that [
In − Z11

Z21

]
X =

[
Z12

In − Z22

]
.

Hint: First show that

M =

[
In −XQ X
−Q In

] [
A−XF 0

0 −(A−XF )T

] [
In −XQ X
−Q In

]−1
,

where Q solves (A − XF )TQ + Q(A − XF ) + F = 0. Then make use of the properties of the matrix sign
function.

References
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Solutions

1 a) ⇒ b) Proof by contraposition. Assume that the rank of C is less then n. We have (w.l.o.g. t0 = 0)

x1 = eAt1x0 +

t1∫
0

eA(t1−t)Bu(t) dt.

Then (using Cayley-Hamilton theorem)

x1 − eAt1x0 =

t1∫
0

eA(t1−t)Bu(t) dt =

t1∫
0

∞∑
i=0

1

i!
(t1 − t)iAiBu(t) dt =

∞∑
i=0

AiB

t1∫
0

1

i!
(t1 − t)iu(t) dt

=

n−1∑
i=0

AiBαi

t1∫
0

(t1 − t)iu(t) dt.

Therefore, x1 − eAt1x0 is a linear combination of the columns of C, so there exists x1 for which this cannot be
satis�ed.

b) ⇒ c) Proof by contraposition. Assume that P (t) is singular for some t > 0. Then there is a nonzero

vector v such that P (t)v = 0. Then also v∗P (t)v = 0, so

t∫
0

v∗eAτBBT eA
T τv dτ = 0.

It follows that v∗eAτB = 0 for all τ ∈ [0, t]. By di�erentiation at τ = 0, it follows v∗AiB for all i = 0, 1, . . . , n−1.
Therefore, v∗C = 0, so C doesn't have full rank.

c) ⇒ a) Choose the input

u(t) = BT eA
T (t1−t)P (t1)−1

(
−eAt1x0 + x1

)
.

Then the �nal state is

x(t1) = eAt1x0 +

t1∫
0

eA(t1−t)BBT eA
T (t1−t)P (t1)−1

(
−eAt1x0 + x1

)
dt

= eAt1x0 +

 t1∫
0

eA(t1−t)BBT eA
T (t1−t) dt

P (t1)−1
(
−eAt1x0 + x1

)
= eAt1x0 − eAt1x0 + x1

= x1.

2

AX +XAT +Q = A

∞∫
0

eAtQeA
T t dt+

 ∞∫
0

eAtQeA
T t dt

AT +Q

=

∞∫
0

(
AeAtQeA

T t + eAtQeA
T tAT

)
dt+Q

=

∞∫
0

d

dt

(
eAtQeA

T t
)

dt+Q

=
(
eAtQeA

T t
) ∣∣∣∣∣
∞

0

+Q

= −Q+Q

= 0.
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3 a), b) ⇒ c) a) implies P =
∫∞
0
eAtBBT eA

T t dt, b) implies P > 0 (using the same argument as in the �rst

Exercise).

a), c) ⇒ b) a) and c) imply P =
∫∞
0
eAtBBT eA

T t dt > 0. Assuming that b) is false, from v∗C = 0 for a

nonzero v, it follows that v∗eAtB = 0 using Cayley-Hamilton, which then implies that v∗Pv = 0, a contradiction.

b), c) ⇒ a) Let x∗A = λx∗. Then ATx = λx. We have

x∗APx+ x∗PATx+ x∗BBTx = 0,

λx∗Px+ λx∗Px = −x∗BBTx,
(λ+ λ)x∗Px = −‖x∗B‖,

2 Reλ = −‖x
∗B‖

x∗Px
.

If x∗B = 0, then x∗C = 0, so (A,B) is uncontrollable, which is a contradiction. Therefore Reλ < 0.

5 a) We see that[
In −X
0 Im

] [
A C
0 −B

] [
In X
0 Im

]
=

[
A XB + C
0 −B

] [
In X
0 Im

]
=

[
A AX +XB + C
0 −B

]
=

[
A 0
0 −B

]
.

Therefore,

sign

([
A C
0 −B

])
=

[
In X
0 Im

]
sign

([
A 0
0 −B

])[
In −X
0 Im

]
=

[
In X
0 Im

] [
−In 0

0 Im

] [
In −X
0 Im

]
=

[
−In X

0 Im

] [
In −X
0 Im

]
=

[
−In 2X

0 Im

]
.

b) Iterating over

[
A C
0 −B

]
looks like

[
Ai+1 Ci+1

0 −Bi+1

]
=

1

2

([
Ai Ci
0 −Bi

]
+

[
Ai Ci
0 −Bi

]−1)
=

1

2

([
Ai Ci
0 −Bi

]
+

[
A−1i A−1i CiB

−1
i

0 −B−1i

])
=

1

2

[
Ai +A−1i Ci +A−1i CiB

−1
i

0 −Bi −B−1i

]
.

Thus we �nd

Ai+1 =
1

2

(
Ai +A−1i

)
,

Bi+1 =
1

2

(
Bi +B−1i

)
,

Ci+1 =
1

2

(
Ci +A−1i CiB

−1
i

)
.

10 [
In −XQ X In 0
−Q In 0 In

]
∼
[
In 0 In −X
−Q In 0 In

]
∼
[
In 0 In −X
0 In Q In −QX

]
[
In −X
Q In −QX

] [
A G
F −AT

] [
In −XQ X
−Q In

]
=

[
A−XF G+XAT

QA+ F −QXF QG−AT +QXAT

] [
In −XQ X
−Q In

]
=

[
A−XF 0

QA+ F −QXF − FXQ+ATQ FX −AT
]

=

[
A−XF 0

(A−XF )TQ+Q(A−XF ) + F −(A−XF )T

]
=

[
A−XF 0

0 −(A−XF )T

]
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sign

([
A G
F −AT

])
=

[
In −XQ X
−Q In

] [
−In 0

0 In

] [
In −X
Q In −QX

]
=

[
−In +XQ X

Q In

] [
In −X
Q In −QX

]
=

[
−In + 2XQ 2X − 2XQX

2Q In − 2QX

]

−In + 2XQ = Z11, 2X − 2XQX = Z12, 2Q = Z21, In − 2QX = Z22

−In +XZ21 = Z11, 2X −XZ21X = Z12, 2Q = Z21, In − Z21X = Z22

−In +XZ21 = Z11, 2X − (In + Z11)X = Z12, 2Q = Z21, In − Z21X = Z22

−In +XZ21 = Z11, (In − Z11)X = Z12, 2Q = Z21, Z21X = In − Z22

7


