
High dimensional approximation of parametric PDE’s
Theory and Algorithms

Albert Cohen

Laboratoire Jacques-Louis Lions
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Overview

1. Introduction to the main themes.

2. Sparse polynomial approximation of parametric/stochastic PDEs.

3. Sparse polynomial algorithms.

4. Reduced basis methods (if time permits).
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The curse of dimensionality

Consider a continuous function y 7→ u(y) with y ∈ [0, 1]. Sample at equispaced points.
Reconstruct, for example by piecewise linear interpolation.
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Error in terms of point spacing h > 0 : if u has C2 smoothness

‖u − R(u)‖L∞ ≤ C‖u ′′‖L∞h2.

Using piecewise polynomials of higher order, if u has Cm smoothness

‖u − R(u)‖L∞ ≤ C‖u(m)‖L∞hm .

In terms of the number of samples n ∼ h−1, the error is estimated by n−m .

In d dimensions : u(y) = u(y1, · · · , yd) with y ∈ [0, 1]d . With a uniform sampling, we
still have

‖u − R(u)‖L∞ ≤ C
(

sup
|α|=m

‖∂αu‖L∞
)

hm ,

but the number of samples is now n ∼ h−d , and the error estimate is in n−m/d .
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Other sampling/reconstruction methods cannot do better

Can be explained by n-width

Let X be a normed space and K ⊂ X a compact set.

Linear n-width (Kolmogorov) :

dN (K)X := inf
dim(E)=n

max
u∈K

min
v∈E

‖u − v‖X .

Benchmark for linear approximation methods applied to the elements from K.

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cn−m/d ≤ dn(K)X ≤ Cn−m/d .

Upper bound : approximation by a specific method.

Lower bound : diversity in K.

Exponential growth in d of the needed complexity to reach a given accuracy.
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Non-linear methods cannot do better

Use a notion of nonlinear n-width (Alexandrov, DeVore-Howard-Micchelli).

Consider maps E : K 7→ Rn (encoding) and R : Rn 7→ X (reconstruction).

Introducing the distorsion of the pair (E ,R) over K

max
u∈K

‖u − R(E(u))‖X ,

we define the nonlinear n-width of K as

δn(K)X := inf
E ,R

max
u∈K

‖u − R(E(u))‖X ,

where the infimum is taken over all continuous maps (E ,R). Comparison with the
Kolmorgorov n-width : δn ≤ dn and sometimes substantially smaller.

If X = L∞([0, 1]d ) and K is the unit ball of Cm([0, 1]d ) it is known that

cn−m/d ≤ δn(K)X ≤ Cn−m/d .

Many other variants of n-widths exist (book by A. Pinkus).
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Infinitely smooth functions

Nowak and Wozniakowski : if X = L∞([0, 1]d ) and

K := {u ∈ C∞([0, 1]d ) : ‖∂νu‖L∞ ≤ 1 for all ν}.

then, for the linear width,

min{n : dn(K)X ≤ 1/2} ≥ c2d/2 .

High dimensional problems occur frequently :

PDE’s with solutions u(x , v , t) defined in phase space : d = 7.

Post-processing of numerical codes : u solver with imput parameters (y1, · · · , yd ).
Learning theory : u regression function of imput parameters (y1, · · · , yd )
In these applications d may be of the order up to 103.

Approximation of stochastic-parametric PDEs : d = +∞.

Smoothness properties of functions should be revisited by other means than Cm

classes, and appropriate approximation tools should be used.
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Parametric/Stochastic PDEs

We are interested in PDE’s of the general form

D(u, y) = 0,

where D is a partial differential operator, u is the unknown and y = (yj )j=1,...,d is a
parameter vector of dimension d >> 1 or d = ∞ ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y ∈ U,

y 7→ u(y)

is the solution map from U to V .

Solution manifold M := {u(y) : y ∈ U} ⊂ V .

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and propagation, risk assessment). In the second case
the solution u(y) is a V -valued random variable.

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y 7→ u(y).

Related objectives : numerical approximation of scalar quantities of interest
y 7→ Q(y) = Q(u(y)), or of averaged quantities u = E(u(y)) or Q = E(Q(y)).
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Guiding example : elliptic PDEs

We consider the steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

set on a domain D ⊂ Rm, where f = f (x) ∈ L2(D) and a ∈ L∞(D)

Lax-Milgram lemma : assuming amin := minx∈D a(x) > 0, unique solution
u ∈ V = H1

0 (D) with

‖u‖V := ‖∇u‖L2(D) ≤ 1

amin
‖f ‖V ′ .

Proof of the estimate : multiply equation by u and integrate

amin‖u‖2V ≤
∫

D

a∇u · ∇u = −

∫

D

u div(a∇u) =

∫

D

uf ≤ ‖u‖V ‖f ‖V ′ .

We may extend this theory to the solution of the weak (or variational) formulation

∫

D

a∇u · ∇v = 〈f , v〉, v ∈ V = H1
0 (D),

if f ∈ V ′ = H−1(D)
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Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑

j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d = ∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑

j≥1

yjψj (x), x ∈ D, y ∈ U,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (Ω), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,
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y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (Ω), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,



Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {D1, . . . ,Dd } of D, and such that
on each Dj the value of a varies on [c − cj , c + cj ] for some c > 0 and 0 < cj < c.

Then a natural parametrization is

a(y) = a +

d∑

j=1

yjψj , a = c, ψj = cjχDj
,

with y = (yj )j=1,...,d ∈ U = [−1, 1]d .
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Example of parametrization : Karhunen-Loeve representation

Assume a = (a(x))x∈D is a random process with average

a(x) = E(a(x)),

and covariance function

Ca(x , z) = E
(

ã(x)ã(z)
)

, ã := a − a, x , z ∈ D.

Define the integral operator by

Tv(x) =

∫

D

Ca(x , z)v(z)dz ,

self-adjoint, positive and compact in L2(D). Therefore it admits an L2 orthonormal
basis (ϕj )j≥1 of eigenfunctions, associated to eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0, such
that λn → 0 as n → +∞.

Karhunen-Loeve (KL) decomposition (a.k.a. principal component analysis) :

a = a +
∑

j≥1

ξjϕj , ξj :=

∫

D

a(x)ϕj(x)dx .
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Properties of KL representation

The ξj are centered and decorelated scalar random variables, with

E(ξj ) = 0, E(ξiξj ) = 0 if j 6= i , E(|ξj |
2) = λj .

If the random process a is bounded, then the variables ξj have bounded range
|ξj | ≤ cj , so that with yj := ξj/cj and ψj := cjϕj we may also write

a = a +
∑

j≥1

yjψj , y = (yj )j≥1 ∈ U = [−1, 1]N.

The KL representation is optimal for trunctation in mean-square L2(D)-error :

inf
dim(E)=J

E(‖ã − PE ã‖2L2 ),

is attained by E = EJ := span{ψ1, . . . , ψJ } with

E(‖ã − PEJ
ã‖2

L2
) = E

(

‖
∑

j>J

yjψj‖2L2
)

=
∑

j>J

λj .

Case of a stationary process : Ca(x , z) = κ(x − z), that is T is a convolution operator.
If D is the m-dimensional 2π-periodic torus, the KL basis is of Fourier type

x 7→ ϕk (x) := (2π)−m/2e ikẋ , k ∈ Zm.
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Model reduction

Objective : fast approximate computation of y 7→ u(y) for many queries of y .

Vehicle : separable (low rank) approximations of the form

u(x , y) ≈ un(x , y) :=

n∑

k=1

vk (x)φk(y),

where vk : D → R with vk ∈ V and φk : U → R. Equivalently

un(y) :=

n∑

k=1

vkφk (y) =

n∑

k=1

φk (y)vk ∈ Vn := span{v1, . . . , vn} ⊂ V , y ∈ U.

Thus we approximate simultaneously all solutions u(y) in the same n-dimensional
space Vn ⊂ V .

By the way, this is what we do when we use a finite element solver :

y 7→ uh(y) ∈ Vh ⊂ V .

So what’s new here ?

Accurate solutions may require Vh of very large dimension Nh = dim(Vh) >> 1 and
each query y 7→ uh(y) is expensive.

We hope to achieve same order of accuracy n << Nh by a choice of Vn adapted to the
parametric problem. In practice the functions v1, . . . , vn are typically picked from such
a finite element space Vh, so that un(y) ∈ Vh for all y but actually belongs to the
much smaller space Vn ⊂ Vh.
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Measure of performance

1. Uniform sense
‖u − un‖L∞(U,V ) := sup

y∈U

‖u(y) − un(y)‖V ,

2. Mean-square sense, for some measure µ on U,

‖u − un‖2L2(U,V ,dµ) :=

∫

U

‖u(y) − un(y)‖2V dµ(y).

If µ is a probability measure, and y randomly distributed according to this measure,
we have

‖u − un‖2L2(U,V ,dµ) = E(‖u(y) − un(y)‖2V ).

Note that we always have

E(‖u(y) − un(y)‖2V ) ≤ ‖u − un‖2L∞(U,V ).

A “worst case” estimate is always above an “average” estimate.
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Optimal spaces ?

Best n-dimensional space for approximation in the uniform sense : the space Fn one
that reaches the Kolmogorov n-width of the solution manifold in the V norm

dn = dn(M) := inf
dim(E)≤n

sup
v∈M

min
w∈E

‖v − w‖V = inf
dim(E)≤n

sup
y∈U

min
w∈E

‖u(y) − w‖V .

Best n-dimensional space for approximation in the mean-square sense : principal
component analysis in V (instead of L2 with KL basis). Consider an orthonormal basis
(ek )k≥1 of V and decompose

u(y) :=
∑

k≥1

uk (y)ek , uk (y) := 〈u(y), ek〉V .

Introduce the infinite correlation matrix M = (E(ukul ))k,l≥1. It has eigenvalues
(λk )k≥1 and associated eigenvectors gk = (gk,l )l∈N which form an orthonormal basis
of ℓ2(N). The best space is

Gn := span{v1, . . . , vn}, vk :=
∑

l≥1

gk,lel ,

and has performance

ε2n := inf
dim(E)≤n

E
(

min
w∈E

‖u(y) − w‖2V
)

=
∑

k>n

λk ≤ d2
n .
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Realistic strategies

The optimal spaces Fn and Gn are usually out of reach. There are two main
computational approaches to realistically design the approximation un =

∑n
k=1 vkφk .

1. Expand formally the solution map y 7→ u(y) in a given “basis” (φk )k≥1 of high
dimensional functions

u(y) =
∑

k≥1

vkφk (y),

where vk ∈ V are viewed as the coefficients in this expansion.

Compute these coefficients for k = 1, . . . , n approximately by some numerical
procedure.

Main representative : Polynomial methods (the φk are multivariate polynomials).

2. Compute first a “good” basis {v1, . . . , vn} and define Vn as their span. Then, for any
given instance y , compute un(y) ∈ Vn by a numerical method.

Main representative : Reduced Bases (RB) methods emulate the n-width spaces Fn for
uniform, or L∞(U,V ), approximation. Proper Orthogonal Decompositions (POD)
methods emulate the principal component spaces Gn for mean-square, or L2(U,V , µ),
approximation.
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Remarks

In the second approach, the functions vk are typically computed in an heavy offline
stage, then for any given y , the computation of un(y) is done in a cheap online stage.

The first approach gives immediate access to the approximation un for all values of y
since the functions vk and φk are both precomputed offline, the online stage is then a
trivial recombination.

Other important distinction : intrusive versus non-intrusive methods. The latter are
based on post-processing individual solution instances

u(y i ), y i ∈ U, i = 1, . . . ,m.

They may benefit of a pre-existing numerical solver viewed as a blackbox and do not
necessarily require full knowledge of PDE model.

In practice, the vk are typically chosen in a discrete (finite element) space Vh ⊂ V ,
with Nh = dim(Vh) >> n. Equivalently, we apply the above technique to the discrete
solution map y 7→ uh(y) ∈ Vh. The error may thus be decomposed into the finite
element discretization error and the model reduction error.
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How to defeat the curse of dimensionality ?

The map y 7→ u(y) is high dimensional, or even infinite dimensional y = (yj )j≥1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A possible way out : exploit anisotropic features in the function y 7→ u(y).

The PDE is parametrized by a function a (diffusion coefficient, velocity, domain
boundary) and yj are the coordinates of a in a certain basis representation
a = a +

∑
j≥1 yjψj .

If the ψj decays as j → +∞ (for instance if a has some smoothness) then the variable
yj are less active for large j .

We shall see that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(N−s) that are independent of d in the sense that they hold when d = ∞.

One key tool for obtaining such result is the concept of sparse approximation.
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Sparsity

Small dimensional phenomenon in high dimensional context

Simple example : vector x = (x1, · · · , xN) ∈ IRN representing a signal, image or
function, discretized with N >> 1.

The vector x is sparse if only few of its coordinates are non-zero.



How to quantify this ?

The set of n-sparse vectors

Σn := {x ∈ IRN ; #{i ; xi 6= 0} ≤ n}

As n gets smaller, x ∈ Σn gets sparser.

More realistic : a vector is quasi-sparse if only a few numerically significant coordinates
concentrate most of the information. How to measure this notion of concentration ?

Remarks :

A vector in Σn is characterized by k non-zero values and their k positions.

Intrinsically nonlinear concepts : x , y ∈ Σn does not imply x + y ∈ Σn.
Sparsity is often hidden, and revealed through an appropriate representation (change
of basis).
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Importance of the concept of representation : David Marr (“Vision”, Freeman, 1982).

“A representation is a formal system for making explicit certain entities or types of
information, together with a specification of how the system does this... For example,
the Arabic, Roman and binary numerical systems are all formal systems for
representing numbers. The Arabic representation consists in a string of symbols drawn
from the set 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and the rule for constructing the description of
a particular integer n is that one decomposes n into a sum of multiple of powers of
10...the alphabet allows the construction of a written representation of words... A
representation, therefore is not a foreign idea at all, we all use representations all the
time. However, the notion that one can capture some aspects of reality by making a
description of it using a symbol and that to do so can be useful seems to me a
fascinating and powerful idea...
...This issue is important, because how information is presented can greatly affect how
easy it is to do different things with it. This is evident even from our number
example : it is easy to add, to substract and even to multiply if the Arabic or binary
representation are used, but it is not at all easy to do these things - especially
multiplication - with Roman numerals. This is a key reason why the Roman culture
failed to develop mathematics in the way the Arabic culture had.”

The choice of an appropriate representation of a function can be fundamental to solve
a specific task.



Fourier representations

- Analysis : f̂ (ω) =
∫+∞
−∞

f (t)e−iωtdt.

- Synthesis : f (t) = (2π)−1
∫+∞
−∞

f̂ (ω)e iωtdω.

Representation of f in terms of the pure waves eω(t) = e iωt , ω ∈ IR.

For 1-periodic functions :

- Analysis : ck (f ) =
∫1
0
f (t)e−i2πktdt.

- Synthesis : f (t) =
∑

k∈ZZ ck (f )e
i2πkt .

Discrete Fourier transform : (x [k])k=0,··· ,N−1 and (x̂ [k])k=0,··· ,N−1 connected by

x̂[k] =
1√
N

N−1∑

n=0

x [n]e−i2πnk/N and x [k] =
1√
N

N−1∑

n=0

x̂ [n]e i2πnk/N .

Implemented in O(N logN) operations by FFT.
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Fourier representations and computation

Approximation of a 1-periodic function by partial sum Snf (t) =
∑n

k=−n ck (f )e
i2πkt .

Problem : fast convergence ?

If f , f ′, · · · , f (m) are continuous over IR, we can apply m times the integration by part
to obtain

|ck (f )| = |(i2πk)−1ck (f
′)|

= · · · |(i2πk)−mck (f
(m))|

≤ |i2πk |−m
∫1
0
|f (m)| ≤ Cmk

−m .

⇒ Fast decay if f is smooth.

However, if f is smooth everywhere except at some discontinuity point x ∈ [0, 1], we
cannot hope better than |ck (f )| ≤ Ck−1 (also Gibbs phenomenon for Snf near the
singularity).

Better representations are needed for such functions.
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Multiscale representations into wavelet bases : the Haar system

. . . . = Σ   f ψ
λ λ λ >λ

λ

+ < f , e > e

+ < f , e > e

ψf  := < f ,

 = < f , e > ef e
0 0 0

1 1

2 2 33
+ < f , e > e

e
1

0 1

1

0

-1

1

0 1

0 1

0 1

ψλ(x) := 2j/2ψ(2jx − k), λ = (j , k), j ≥ 0, k ∈ ZZ, |λ| = j = j(λ).

More general wavelets are constructed from similar multiscale approximation
processes, using smoother functions such as splines, finite elements...

In d dimension ψλ(x) := 2dj/2ψ(2jx − k), k ∈ ZZd.
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Discrete signals : fast decomposition/reconstruction algorithms

1D array (f0, · · · , fN )
⇒ Two half array : averages

f2k+f2k+1
2

and differences
f2k−f2k+1

2

⇒ Iterate on the half array of averages...

Multiscale processing of 2D data : separable algorithm

c

c

d d

d
J−1

a

b c

J−1

J−1 J−1

J

Image f (k, l) ⇒ process lines ⇒ process columns ⇒ Iterate ...



Digital Image 512x512 Multiscale Decomposition

Multiscale decompositions of natural images are sparse : a few numerically significant
coefficients concentrate most of the energy and information.



Application to Image Compression

Basic idea : encode with more precision
the few numerically significant coefficients
⇒Resolution is locally adapted
Example : 1 % largest coefficients encoded

Compression standard JPEG 2000 :
- Same basic principles
- Based on smoother wavelets
- Good quality with compression 1/40



Measuring sparsity in a representation f =
∑

fλψλ

Intuition : growth of number of coefficients above threshold η is controlled as η→ 0.

Weak spaces : (fλ) ∈ wℓp if and only if

Card{λ s.t. |fλ| > η} ≤ Cη−p ,

or equivalently, the decreasing rearrangement (f ∗
k
)k≥1 of (|fλ|) satisfies

f ∗k ≤ Ck−1/p .

The wℓp quasi-norm can be defined by

‖(fλ)‖wℓp := sup
k≥1

k1/p f ∗k .

Obviously ℓp ⊂ wℓp . The representation is sparser as p → 0.

If p < 2 and (ψλ) is (any) orthonormal basis in a Hilbert space H, an equivalent
statement is in terms of best n-term approximation : with fn =

∑
n largest |fλ| fλψλ,

‖f −fn‖H =
(∑

k>n

|f ∗k |2
)1/2

≤ ‖(fλ)‖wℓp
(∑

k>n

k−2/p
)1/2

≤ C‖(fλ)‖wℓp n−s , s =
1

p
−

1

2
.
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Older observation by Stechkin for the strong ℓp spaces

Lemma : one has

(fλ)λ∈Λ ∈ ℓp ⇒ ‖f − fn‖H ≤ ‖(fλ)‖ℓp (n + 1)−s , s =
1

p
−

1

2
.

Proof : using the decreasing rearrangement, we combine

‖f − fn‖H = (
∑

k>n

|f ∗k |2)2 = (
∑

k>n

|f ∗k |2−p |f ∗k |p)1/2 ≤ |f ∗n+1 |
1−p/2‖(fλ)‖p/2ℓp

and

(n + 1)|f ∗n+1 |p ≤
n+1∑

k=1

|f ∗k |p ≤ ‖(fλ)‖pℓp .

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).

For concrete choices of bases a relevant question is thus : what smoothness properties
of f ensure that the sequence (fλ) belongs to ℓp or wℓp for small values of p ?

In the case of wavelet bases, such properties are characterized by Besov spaces.

In our present setting of high-dimensional functions y 7→ u(y) we shall rather use
tensor-product polynomial bases instead of wavelet bases. Sparsity properties will
follow to the anisotropic features of these functions.
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Return to the main guiding example

Steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f = f (x) ∈ L2(D) and the diffusion coefficients are given by

a = a(x , y) = a(x) +
∑

j≥1

yjψj (x),

where a and the (ψj )j≥1 are given functions and y ∈ U := [−1, 1]N. Uniform ellipticity
assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U.

Equivalent expression of (UEA) : ā ∈ L∞(D) and
∑

j≥1

|ψj (x)| ≤ ā(x) − r , x ∈ D,

or
∥

∥

∥

∥

∥

∑
j≥1 |ψj |

a

∥

∥

∥

∥

∥

L∞(D)

≤ θ < 1.

Lax-Milgram : solution map is well-defined from U to V := H1
0 (Ω) with uniform bound

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U, where ‖v‖V := ‖∇v‖L2 .
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Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) =
∑
ν∈F tνy

ν, where

yν :=
∏

j≥1

y
νj
j

and tν :=
1

ν!
∂νu|y=0 ∈ V with ν! :=

∏

j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν
Objective : identify a set Λ ⊂ F with #(Λ) = n such that u is well approximated by
the partial expansion

uΛ(y) :=
∑

ν∈Λ
tνy

ν.



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U

‖u(y) − uΛ(y)‖V ≤ sup
y∈U

∑

ν/∈Λ
‖tνyν‖V =

∑

ν/∈Λ
‖tν‖V

Best n-term approximation in ℓ1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .
Lemma : if (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1, then for this Λn,

∑

ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖p .

Proof : with (t∗
k
)k>0 the decreasing rearrangement, we combine

∑

ν/∈Λn

‖tν‖V =
∑

k>n

t∗k =
∑

k>n

|t∗k |
1−p |t∗k |

p ≤ |t∗n+1 |
1−pCp ,

and

(n + 1)|t∗n+1 |
p ≤

n+1∑

k=1

|t∗k |
p ≤ Cp .

Question : do we have (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1 ?
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k
)k>0 the decreasing rearrangement, we combine

∑

ν/∈Λn

‖tν‖V =
∑

k>n

t∗k =
∑

k>n

|t∗k |
1−p |t∗k |

p ≤ |t∗n+1 |
1−pCp ,

and

(n + 1)|t∗n+1 |
p ≤

n+1∑

k=1

|t∗k |
p ≤ Cp .

Question : do we have (‖tν‖V )ν∈F ∈ ℓp(F) for some p < 1 ?



One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j>0 ∈ ℓp(N) ⇒ (‖tν‖V )ν∈F ∈ ℓp(F).

Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞(U,V ) with algebraic rate O(n−s ) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

(iii) The solution manifold M := {u(y) ; y ∈ U} is uniformly well approximated by the
n-dimensional space Vn := span{tν : ν ∈ Λn}. Its n-width satisfies the bound

dn(M)V ≤ max
y∈U

dist(u(y),Vn)V ≤ max
y∈U

‖u(y) − uΛn
(y)‖V ≤ Cn−s .

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Same result for more general linear equations Au = f with affine operator
dependance : A = A +

∑
j≥1 yjAj uniformly invertible over y ∈ U, and

(‖Aj‖V→W )j≥1 ∈ ℓp(N), as well as other models.
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Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ ℜ(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to

∫

D

a(z)∇∂zj u(z) · ∇v = −

∫

D

ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.
Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗

δ
in the polydisc

Uρ := ⊗{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.
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Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫

|z ′|=b

u(z ′)

z − z ′ dz
′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj gives

‖∂νu|z=0‖V ≤ Cδν!
∏

j≥1

ρ
−νj
j

,

and thus
‖tν‖V ≤ Cδ

∏

j≥1

ρ
−νj
j

= Cδρ
−ν,

for any sequence ρ = (ρj )j≥1 such that

∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ.
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Optimization

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν : ρ s.t.

∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except in particular case, for
example when the ψj have disjoint supports.

Instead design a particular choice ρ = ρ(ν) satisfying the constraint with δ = r/2, for
which we prove that

(‖ψj‖L∞ )j≥1 ∈ ℓp(N) ⇒ (ρ(ν)−ν)ν∈F ∈ ℓp(F),

therefore proving the main theorem.
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A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so that

∑

j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
.

We have, with δ = r
/
2,

‖tν‖V ≤ Cδρ
−ν = Cδb

ν,

where b = (bj ) and

bj := ρ
−1
j

=
|ψj (x)|

a(x) − r
2

≤ ‖ψj‖L∞
R − r

2

.

Therefore b ∈ ℓp(N). From (UEA), we have |ψj (x)| ≤ a(x) − r and thus ‖b‖ℓ∞ < 1.
We finally observe that

b ∈ ℓp(N) and ‖b‖ℓ∞ < 1 ⇔ (bν)ν∈F ∈ ℓp(F).

Proof : factorize ∑

ν∈F
bpν =

∏

j≥1

∑

n≥0

b
pn
j

=
∏

j≥1

1

1 − b
p
j

.
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Improved summability results

Improved results can be obtained, without relying on complex variable, by better
exploiting the specific structure of the diffusion equation.

Recursive formula for the Taylor coefficients : with ej = (0, . . . , 0, 1, 0, . . . ) the
Kroeneker sequence of index j , the coefficient tν is solution to

∫

D

ā∇tν∇v = −
∑

j : νj 6=0

∫

D

ψj∇tν−ej∇v , v ∈ V .

We introduce the quantities

dν :=

∫

D

a|∇tν|
2 and dν,j :=

∫

D

|ψj | |∇tν|
2.

Recall that (UEA) implies that

∥

∥

∥

∥

∑
j≥1 |ψj |

a

∥

∥

∥

∥

L∞(D)

≤ θ < 1. In particular

∑

j≥1

dν,j ≤ θdν.

We use here the equivalent norm ‖v‖2
V

:=
∫
D
a|∇v |2.

Lemma : under (UEA), one has
∑
ν∈F dν =

∑
ν∈F ‖tν‖2V <∞.
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Proof

Taking v = tν in the recursion gives

dν =

∫

D

a|∇tν|
2 = −

∑

j : νj 6=0

∫

D

ψj∇tν−ej∇tν.

Apply Young’s inequality on the right side gives

dν ≤
∑

j : νj 6=0

( 1

2

∫

D

|ψj | |∇tν−ej |
2 +

1

2

∫

D

|ψj | |∇tν|
2
)

=
1

2

∑

j : νj 6=0

dν,j +
1

2

∑

j : νj 6=0

dν−ej ,j .

The first sum is bounded by θdν, therefore

(

1 −
θ

2

)

dν ≤ 1

2

∑

j : νj 6=0

dν−ej ,j .

Now summing over all |ν| = k gives

(

1 −
θ

2

) ∑

|ν|=k

dν ≤ 1

2

∑

|ν|=k

∑

j : νj 6=0

dν−ej ,j =
1

2

∑

|ν|=k−1

∑

j≥1

dν,j ≤
θ

2

∑

|ν|=k−1

dν.

Therefore
∑

|ν|=k dν ≤ κ
∑

|ν|=k−1 dν with κ := θ
2−θ

< 1, and thus
∑
ν∈F dν <∞.
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Rescaling

Now let ρ = (ρj )j≥1 be any sequence with ρj > 1 such that
∑

j≥1 ρj |ψj | ≤ a − δ for

some δ > 0, or equivalently such that

∥

∥

∥

∥

∑
j≥1 ρj |ψj |

a

∥

∥

∥

∥

L∞(D)

≤ θ < 1.

Considered the rescaled solution map ũ(y) = u(ρy) where ρy := (ρjyj )j≥1 which is the
solution of the same problem as u with ψj replaced by ρjψj .

Since (UEA) holds for for these rescaled functions, the previous lemma shows that

∑

ν∈F
‖t̃ν‖2V <∞,

where

t̃ν :=
1

ν!
∂νũ(0) =

1

ν!
ρν∂νu(0) = ρνtν.

This therefore gives the weighted ℓ2 estimate

∑

ν∈F
(ρν‖tν‖V )2 ≤ C <∞.

In particular, we retrieve the estimate ‖tν‖V ≤ Cρ−ν that was obtained by the
complex variable approach, however the above estimate is stronger.
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1

ν!
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This therefore gives the weighted ℓ2 estimate
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In particular, we retrieve the estimate ‖tν‖V ≤ Cρ−ν that was obtained by the
complex variable approach, however the above estimate is stronger.
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An alternate summaibility result

Applying Hölder’s inequality gives

∑

ν∈F
‖tν‖pV ≤

(∑

ν∈F
(ρν‖tν‖V )2

)p/2(∑

ν∈F
ρ−qν

)1−p/2
,

with q =
2p
2−p

> p, or equivalently 1
q
= 1

p
− 1

2
.

The sum in second factor is finite provided that (ρ−1
j

)j≥1 ∈ ℓq. Therefore, the
following result holds.

Theorem (Bachmayr-Cohen-Migliorati, 2015) : Let p and q be such that 1
q
= 1

p
− 1

2
.

Assume that there exists a sequence ρ = (ρj )j≥1 of numbers larger than 1 such that

∑

j≥1

ρj |ψj | ≤ a − δ,

for some δ > 0 and
(ρ−1

j
)j≥1 ∈ ℓq .

Then (‖tν‖V )ν∈F ∈ ℓp(F).

The above conditions ensuring ℓp summability of (‖tν‖V )ν∈F are significantly weaker
than those in the first summability theorem especially for locally supported ψj .
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Disjoint supports

Assume that the ψj have disjoint supports.

Then with δ = r
2
, we choose

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
> 1.

so that
∑

j≥1 ρj |ψj | ≤ a − δ holds.

We have

bj := ρ
−1
j

=
|ψj (x)|

a(x) − r
2

≤ ‖ψj‖L∞
R − r

2

.

Thus in this case, our result gives for any 0 < q <∞,

(‖ψj‖L∞ )j≥1 ∈ ℓq(N) ⇒ (‖tν‖V )ν∈F ∈ ℓp(F),

with 1
q
= 1

p
− 1

2
.

Similar improved results if the ψj have supports with limited overlap, such as wavelets.

No improvement in the case of globally supported functions, such as typical KL bases.
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Other models

Model 1 : same PDE but no affine dependence, e.g. a(x , y) = a(x) + (
∑

j≥0 yjψj (x))
2.

Assuming that a(x) ≥ r > 0 guarantees ellipticity uniformly over y ∈ U.

Model 2 : similar problems + non-linearities, e.g.

g(u) − div(a∇u) = f on D = D(y) u|∂D = 0,

with same assumptions on a and f . Well-posedness in V = H1
0 (D) for all f ∈ V ′ is

ensured for certain nonlinearities, e.g. g(u) = u3 of u5 in dimension m = 3 (V ⊂ L6).

Model 3 : PDE’s on domains with parametrized boundaries, e.g.

−∆v = f on D = Dy u|∂D = 0.

where the boundary of Dy is parametrized by y , e.g.

Dy := {(x1, x2) ∈ R2 : 0 < x1 < 1 and 0 < x2 < b(x1, y)},

where b = b(x , y) = b(x) +
∑

j yjψj (x) satisfies 0 < r < b(x , y) < R. We transport

this problem on the reference domain [0, 1]2 and study

u(y) := v(y) ◦ φy , φy : [0, 1]2 → Dy , φy (x1, x2) := (x1, x2b(x1, y)).

which satisfies a diffusion equation with coefficient a = a(x , y) non-affine in y .
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Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ⊗{|zj | ≤ 1}. For this reason,Taylor series are not expected to converge.

Instead we consider the tensorized Legendre expansion

u(y) =
∑

ν∈F
vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized in

L2
(

[−1, 1], dt
2

)

.

Thus (Lν)ν∈F is an orthonormal basis for L2(U,V , µ) where µ := ⊗j≥1
dyj
2

is the
uniform probability measure and we have

vν =

∫

U

u(y)Lν(y)dµ(y).

We also consider the L∞-normalized Legendre polynomials Pk = (1 + 2k)−1/2Lk and
their tensorized version Pν, so

u(y) =
∑

ν∈F
wνPν(y),

where wν :=
(∏

j≥1(1 + νj )
1/2

)

vν.



Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ⊗{|zj | ≤ 1}. For this reason,Taylor series are not expected to converge.

Instead we consider the tensorized Legendre expansion

u(y) =
∑

ν∈F
vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized in

L2
(

[−1, 1], dt
2

)

.

Thus (Lν)ν∈F is an orthonormal basis for L2(U,V , µ) where µ := ⊗j≥1
dyj
2

is the
uniform probability measure and we have

vν =

∫

U

u(y)Lν(y)dµ(y).

We also consider the L∞-normalized Legendre polynomials Pk = (1 + 2k)−1/2Lk and
their tensorized version Pν, so

u(y) =
∑

ν∈F
wνPν(y),

where wν :=
(∏

j≥1(1 + νj )
1/2

)

vν.



Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ⊗{|zj | ≤ 1}. For this reason,Taylor series are not expected to converge.

Instead we consider the tensorized Legendre expansion

u(y) =
∑

ν∈F
vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized in

L2
(

[−1, 1], dt
2

)

.

Thus (Lν)ν∈F is an orthonormal basis for L2(U,V , µ) where µ := ⊗j≥1
dyj
2

is the
uniform probability measure and we have

vν =

∫

U

u(y)Lν(y)dµ(y).

We also consider the L∞-normalized Legendre polynomials Pk = (1 + 2k)−1/2Lk and
their tensorized version Pν, so

u(y) =
∑

ν∈F
wνPν(y),

where wν :=
(∏

j≥1(1 + νj )
1/2

)

vν.



Main result

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 0, 1, 2 and 3, and for any p < 1,

(‖ψj‖X )j>0 ∈ ℓp(N) ⇒ (‖vν‖V )ν∈F and (‖wν‖V )ν∈F ∈ ℓp(F).

with X = L∞ for models 0, 1, 2, and X = W 1,∞ for model 3.

By the same application of Stechkin’s argument as for Taylor expansions, best n-term
truncations for the L∞ normalized expansion converge rate O(n−s) in L∞(U,V )

where s = 1
p
− 1.

Best n-term truncations for the L2 normalized expansion converge rate O(n−r ) in
L2U,V , µ) where r = 1

p
− 1

2
.

In the particular case of our guiding example, model 0, we can obtain improved
summability results for Legendre expansions, similar to Taylor expansions.

Key ingredient in the proof of the above theorem : estimates of Legendre coefficients
for holomorphic functions in a “small” complex neighbourhood of U.
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Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z | ≤ b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

|tn | :=

∣

∣

∣

∣

∣

u(n)(0)

n!

∣

∣

∣

∣

∣

≤ Mb−n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b−1)/2 and (b − b−1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent wn of u is bounded by

|wn | ≤ Mb−n(1 + 2n)φ(b), φ(b) :=
πb

b − 1

b

10−1

b−b

10−1

2
b+b

−1

2

−1



A general assumption for sparsity of Legendre expansions

We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, ε)-holomorphy property if and only if there exist a sequence (cj )j≥1 ∈ ℓp(N), a
constant ε > 0 and C0 > 0, such that : for any sequence ρ = (ρj )j≥1 such that ρj > 1
and ∑

j≥1

(ρj − 1)cj ≤ ε,

the solution map has a complex extension

z 7→ u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Oρ = ⊗j≥1Oρj where Oρj is an open neigbourhood of the elliptical domain
Eρj , with bound

sup
z∈Eρ

‖u(z)‖V ≤ C0,

where Eρ = ⊗j≥1Eρj .
Under such an assumption, one has (up to additional harmless factors) an estimate of
the form

‖wν‖V ≤ C0 inf
{
ρ−ν ; ρ s.t.

∑

j≥1

(ρj − 1)cj ≤ ε
}
,

allowing us to prove that (‖wν‖V )ν∈F ∈ ℓp(F).
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A general framework for establishing the (p, ε)-holomorphy assumption

Assume a general problem of the form

P(u, a) = 0,

with a = a(y) = a +
∑

j≥1 yjψj , where

P : V × X → W ,

with V ,X ,W a triplet of complex Banach spaces, and a and ψj are functions in X .

Theorem (Chkifa-Cohen-Schwab, 2013) : assume that

(i) The problem is well posed for all a ∈ Q = a(U) with solution u(y) = u(a(y)) ∈ V .

(ii) The map P is differentiable (holomorphic) from X × V to W .

(iii) For any a ∈ Q, the differential ∂uP(u(a), a) is an isomorphism from V to W

(iv) One has (‖ψj‖X )j≥1 in ℓp(N) for some 0 < p < 1,

Then, for ε > 0 small enough, the (p, ε)-holomorphy property holds.
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Idea of proof

Based on the holomorphic Banach valued version of the implicit function theorem (see
e.g. Dieudonné).

1. For any a ∈ Q = {a(y) : y ∈ U} we can find a εa > 0 such that the map a → u(a)

has an holomorphic extension on the ball B(a, εa) := {ã ∈ X : ‖ã − a‖X < εa}.
2. Using the decay properties of the ‖ψj‖X , we find that Q is compact in X . It can be
covered by a finite union of balls B(ai , εai ), for i = 1, . . . ,M.

3. Thus a → u(a) has an holomorphic extension on a complex neighbourhood N of Q
of the form

N = ∪M
i=1B(ai , εai ).

4. For ε small enough, one proves that if
∑

j≥1(ρj − 1)cj ≤ ε with cj := ‖ψj‖L then

with Oρ = ⊗j≥1Oρj where Ob := {z ∈ C : dist(z , [−1, 1])C ≤ b − 1} is a
neighborhood of Eb, one has

z ∈ Oρ ⇒ a(z) ∈ N .

This gives holomorphy of z 7→ u(z) = u(a(z)) in each variable for z ∈ Oρ.



Lognormal coefficients

We assume diffusion coefficients are given by

a = exp(b),

with b a random function defined by an affine expansion of the form

b = b(y) =
∑

j≥1

yjψj ,

where (ψj ) is a given family of functions from L∞(D) and y = (yj )j≥1 a sequence of
i.i.d. standard Gaussians N (0, 1) variables.

Thus y ranges in U = RN equipped with the probabilistic structure (U,B(U), γ) where
B(U) is the cylindrical Borel Σ-algebra and γ the tensorized Gaussian measure.

Commonly used stochastic model for diffusion in porous media.
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Affine Gaussian representations

Given a centered Gaussian process (b(x))x∈D with covariance function
Cb(x , z) = E(b(x)b(z)), one frequently consider the Karhunen-Loeve expansion,

b =
∑

j≥1

ξjϕj ,

where ξj are i.i.d. N (0, σ2
j
) and (ϕj )j≥1 are L2(D)-orthonormal, and normalize

ψj = σjϕj and yj = σ
−1
j ξj ,

so that b =
∑

j≥1 yjψj . However, other representations may be relevant.

Example : b the Brownian bridge on D = [0, 1] defined by Cb(x , z) := min{x , z }− xz .

1. Normalized KL : ψj (x) =
√

2
πj

sin(πjx).

2. Levy-Ciesielski representation : uses Schauder basis (primitives of Haar system)

ψl,k(x) := 2−l/2ψ(2lx − k), k = 0, . . . , 2l − 1, l ≥ 0, ψ(x) :=
1

2
(1 − |2x − 1|)+.

Then with coarse to fine ordering ψj = ψl,k for j = 2l + k, one has b =
∑

j≥1 yjψj .
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Main theoretical questions

1. Integrability : under which conditions is y 7→ u(y) Bochner measurable with values
in V and satifies for 0 ≤ k <∞.

‖u‖k
Lk (U,V ,γ)

= E(‖u(y)‖kV ) <∞,

In view of ‖u(y)‖V ≤ exp(‖b(y)‖L∞ )‖f ‖V ′ , this holds if E(exp(k‖b(y)‖L∞ ) <∞.

2. Approximability : if u ∈ L2(U,V , γ), consider the multivariate Hermite expansion

u =
∑

ν∈F
uνHν, Hν(y) :=

∏

j≥1

Hνj (yj ) and uν :=

∫

U

u(y)Hν(y)dγ(y)

where F is the set of finitely supported integer sequences ν = (νj )j≥1.

Best n-term approximation : un =
∑
ν∈Λn

uνHν, with Λn indices of n largest ‖uν‖V .

Stechkin lemma : if (‖uν‖V )ν∈F ∈ ℓp(F) for some 0 < p < 2 then

‖u − un‖L2(U,V ,γ) ≤ Cn−s , s :=
1

p
−

1

2
, C := ‖(‖uν‖V )ν∈F‖ℓp
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Existing results

Integrability : sufficient conditions for u ∈ Lk (U,V , γ) for all 0 ≤ k <∞ are known.

1. Smoothness : Cb ∈ Cα(D ×D) for some α > 0 (Charrier).

2. Summability :
∑

j≥1 ‖ψj‖L∞ <∞ (Schwab-Gittelson-Hoang)

3.
∑

j≥1 ‖ψj‖2−δL∞
‖ψj‖δCα <∞ for some 0 < δ < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p < 1, if (j‖ψj‖L∞ ) ∈ ℓp(N) then
(‖uν‖V ) ∈ ℓp(F).

Remarks :

The condition (j‖ψj‖L∞ ) ∈ ℓp(N) is strong, compared to L2-integrability conditions.

It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition only based on ‖ψj‖L∞ , does not exploit the support properties.



Existing results

Integrability : sufficient conditions for u ∈ Lk (U,V , γ) for all 0 ≤ k <∞ are known.

1. Smoothness : Cb ∈ Cα(D ×D) for some α > 0 (Charrier).

2. Summability :
∑

j≥1 ‖ψj‖L∞ <∞ (Schwab-Gittelson-Hoang)

3.
∑

j≥1 ‖ψj‖2−δL∞
‖ψj‖δCα <∞ for some 0 < δ < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p < 1, if (j‖ψj‖L∞ ) ∈ ℓp(N) then
(‖uν‖V ) ∈ ℓp(F).

Remarks :

The condition (j‖ψj‖L∞ ) ∈ ℓp(N) is strong, compared to L2-integrability conditions.

It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition only based on ‖ψj‖L∞ , does not exploit the support properties.



Existing results

Integrability : sufficient conditions for u ∈ Lk (U,V , γ) for all 0 ≤ k <∞ are known.

1. Smoothness : Cb ∈ Cα(D ×D) for some α > 0 (Charrier).

2. Summability :
∑

j≥1 ‖ψj‖L∞ <∞ (Schwab-Gittelson-Hoang)

3.
∑

j≥1 ‖ψj‖2−δL∞
‖ψj‖δCα <∞ for some 0 < δ < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p < 1, if (j‖ψj‖L∞ ) ∈ ℓp(N) then
(‖uν‖V ) ∈ ℓp(F).

Remarks :

The condition (j‖ψj‖L∞ ) ∈ ℓp(N) is strong, compared to L2-integrability conditions.

It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition only based on ‖ψj‖L∞ , does not exploit the support properties.



Our main result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :

Let 0 < p < 2 and define q := q(p) =
2p
2−p

> p (or equivalently 1
q
= 1

p
− 1

2
).

Assume that there exists a positive sequence ρ = (ρj )j≥1 such that

(ρ−1
j )j≥1 ∈ ℓq(N) and sup

x∈D

∑

j≥1

ρj |ψj (x)| <∞.

Then y 7→ u(y) is measurable and belongs Lk (U,V , γ) for all 0 ≤ k <∞ and

(‖uν‖V )ν∈F ∈ ℓp(F).

Remarks :

Similar result for the Taylor and Legendre coefficients for the affine parametric model
a(y) = a +

∑
j≥1 yjψj however by different arguments.

Proof is rather specific to the linear diffusion equation (yet extensions possible).

Our conditions for ℓp summability of (‖uν‖V )ν∈F are weaker than ℓp summability of
(j‖ψj‖L∞ )j≥1 especially for locally supported ψj .



Our main result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :

Let 0 < p < 2 and define q := q(p) =
2p
2−p

> p (or equivalently 1
q
= 1

p
− 1

2
).

Assume that there exists a positive sequence ρ = (ρj )j≥1 such that

(ρ−1
j )j≥1 ∈ ℓq(N) and sup

x∈D

∑

j≥1

ρj |ψj (x)| <∞.

Then y 7→ u(y) is measurable and belongs Lk (U,V , γ) for all 0 ≤ k <∞ and

(‖uν‖V )ν∈F ∈ ℓp(F).

Remarks :

Similar result for the Taylor and Legendre coefficients for the affine parametric model
a(y) = a +

∑
j≥1 yjψj however by different arguments.

Proof is rather specific to the linear diffusion equation (yet extensions possible).

Our conditions for ℓp summability of (‖uν‖V )ν∈F are weaker than ℓp summability of
(j‖ψj‖L∞ )j≥1 especially for locally supported ψj .



The case of the Brownian bridge

KL representation :

Globally supported functions ψj (x) =
√

2
πj

sin(πjx).

The decay of (‖ψj‖L∞ )j≥1 is not sufficient to apply our results.

No provable approximability by best n-term Hermite series.

Schauder representation :

Wavelet type functions with decay in scale ‖ψλ‖L∞ ∼ 2−l/2.

This allows to apply our result ρλ = 2βl , for any β < 1
2
.

Our result imply that (‖uν‖V )ν∈F ∈ ℓp(F) for any p such that 1
2
> 1

p
− 1

2
.

In particular, best n-term Hermite approximations satisfy

‖u − uΛn
‖L2(U,V ,γ) ≤ Cn−s , s =

1

p
−

1

2
<

1

2
.
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From approximation results to numerical methods

The results so far are approximation results. They say that for several models of
parametric PDEs, the solution map y 7→ u(y) can be accurately approximate (with
rate n−s for some s > 0) by multivariate polynomials having n terms.

These polynomials are computed by best n-term truncation of Taylor or Legendre or
Hermite series, but this is not feasible in practical numercial methods.

Problem 1 : the best n-term index sets Λn are computationally out of reach. Their
identification would require the knowledge of all coefficients in the expansion.

Objective : identify non-optimal yet good sets Λn.

Problem 2 : the exact polynomial coefficients tν (or vν, wν, uν) of u for the indices
ν ∈ Λn cannot be computed exactly.

Objective : numerical strategy for approximately computing polynomial coefficients.
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Numerical methods : strategies to build the sets Λn

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V (or ‖vν‖V ,
‖wν‖V , ‖uν‖V ). Take Λn to be the set corresponding to the n largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn · · · .
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Adaptive vs non-adaptive

Adaptive methods are known to converge better than non-adaptive ones, but their
analysis is more difficult.

A test case for linear-affine model in dimension d = 64 : comparison between the
approximation performance with Λn given by standard choices {sup νj ≤ k} (black) or
{
∑
νj ≤ k} (purple) and by anisotropic choices based on a-priori bounds (blue) or

adaptively generated (green).
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Highest polynomial degree for Λ1000 with different choices : 1, 2, 162 and 114.



Downward closed index sets

For adaptive algorithms it is critical that the index chosen sets are downward closed

ν ∈ Λ and µ ≤ ν⇒ µ ∈ Λ,

where µ ≤ ν means that µj ≤ νj for all j ≥ 1.

Such sets are also called lower sets. This property does not generally holds for the sets
corresponding to the n largest estimates, however the same convergence rates as
proved in the approximation theorems, can be proved when imposing such a structure.

If Λ is downward closed, we consider the polynomial space

PΛ = span{y → yν : ν ∈ Λ} = span{Lν : ν ∈ Λ} = span{Hν : ν ∈ Λ}

and its V -valued version

VΛ := {
∑

ν∈Λ
vνy

ν : vν ∈ V } = V ⊗ PΛ.

After having selected Λn we search for a computable approximation of u in VΛn
.

Note that dim(VΛn
) = ∞. In practice we use VΛn,h = Vh ⊗ PΛn

which has dimension

dim(VΛn,h) = dim(Vh) dim(PΛn
) = Nhn <∞.
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Strategies to build the polynomial approximation : intrusive methods

1. Galerkin method : based on a space-parameter variational form (test the parametric
PDE on arbitrary y 7→ v(y) and integrate both in x and y). Example for model 0 :
find u ∈ L2(U,V , µ) such that for all v ∈ L2(U,V , µ),

A(u, v) :=

∫

U

∫

D

a(x , y)∇u(x , y)∇v(x , y)dxdµ(y) =

∫

U

〈f , v(y)〉dµ(y) =: L(v),

The problem is coercive in L2(U,V , µ). Galerkin formulation : find un ∈ VΛn
such that

A(un, vn) = L(vn), vn ∈ VΛn
.

Cea’s lemma gives error estimate

‖u − un‖L2(U,V ,µ ≤ (R/r)1/2 min
v∈VΛn

‖u − v‖L2(U,V ,µ.

After space discretization, Galerkin problem in VΛn,h gives a (nNh)× (nNh) system.

2. Exact computation of the Taylor coefficients ‖tν‖V , based on the recursive formula.

After space discretization, sequence of n systems of size Nh × Nh.

Adaptive algorithms with optimal theoretical guarantees exist for both method 1
(Gittelson-Schwab) and 2 (Chkifa-Cohen-DeVore-Schwab).

These methods apply to other models, however mainly confined to linear PDEs, with
affine parameter dependence.
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Exact adaptive computation of the Taylor coefficients

With ej the Kroenecker sequence of index j ,

∫

D

ā∇tν∇v = −
∑

j : νj 6=0

∫

D

ψj∇tν−ej∇v , v ∈ V .

If Λn is downward closed, this allows us to compute all tν by recursively solving n

boundary value problems, or Nh × Nh systems after space discretization in Vh.

Adaptive method : start with Λ1 = {0}. Given that we have computed Λk and the
(tν)ν∈Λk

we compute the tν for ν in the margin

M(Λk ) = Mk := {ν /∈ Λk ; ν − ej ∈ Λk for some j},

and build the new set by bulk search : choose Λk+1 = Λk ∪ Sk , with Sk ⊂ Mk

smallest such that
∑
ν∈Sk

‖tν‖2V ≥ θ
∑
ν∈Mk

‖tν‖2V , for a fixed θ ∈]0, 1[.

Key property (saturation) : under (UEA), for any lower set Λ there exists a constant
C such that ∑

ν/∈Λ
‖tν‖2V ≤ C

∑

ν∈M(Λ)

‖tν‖2V .

This guarantees ℓ2 error reduction by fixed factor at each step k → k + 1.

In addition, can be proved to converge with optimal convergence rate #(Λk )
−s .
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Test case in high dimension d = 64

Physical domain D = [0, 1]2 = ∪d
j=1Dj .

Diffusion coefficients a(x , y) = 1 +
∑d

j=1 yj

(

0.9
j2

)

χDj
. Thus U = [−1, 1]64.

Adaptive search of Λ implemented in C++, spatial discretization by FreeFem++.

Comparison between the Λk generated by the adaptive algorithm (green) and
non-adaptive choices {supνj ≤ k} (black) or {

∑
νj ≤ k} (purple) or k largest a-priori

bounds on the ‖tν‖V (blue).
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Highest polynomial degree with #(Λ) = 1000 coefficients : 1, 2, 162 and 114.



Computation of the average solution

Assuming that y is uniformly distributed on U = [−1, 1]64, we compute the average
solution

ū = E(u),

either by the deterministic approach

ūΛ :=
∑

ν∈Λ
tνE(yν), E(yν) =

∏

j>0

(

∫1

−1
tνj

dt

2

)

=
∏

j>0

1 + (−1)νj

2 + 2νj
,

or by the Monte Carlo approach ūn := 1
n

∑n
i=1 u(y

i ), where y1, · · · , yn are n

independent realization of y .
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Error curves in terms of number of solved bvp (MC in full line).



Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots ui := u(y i ) for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫

U

u(y)Lν(y)dµ(y) ≈
m∑

i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = #(Λn) = dim(PΛn
) search for a unique polynomial

un = IΛn
u ∈ VΛn

such that

un(y
i ) = ui , i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for polynomial un ∈ VΛn
minimizing

m∑

i=1

‖ui − un(y
i )‖2V .

4. Underdetermined least-squares : with m < n search for a polynomial un ∈ VΛn

minimizing
m∑

i=1

‖ui − un(y
i )‖2V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) ℓ1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).
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Advantages of intrusive methods

Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment Λn → Λn+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with n of the Lebesgue constant relative to the
interpolation operator.

Main issue : how to best choose the point y i ?

In the following we concentrate on interpolation, which we present for simplicity for
scalar valued functions (extension to V or Vh valued function is trivial).
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In the following we concentrate on interpolation, which we present for simplicity for
scalar valued functions (extension to V or Vh valued function is trivial).



A commonly used non-polynomial method : RKHS interpolation

Given a set of point {y1, . . . , yn}, there are infinitely many functions that admit the
values {u(y1), . . . , u(yn)} at these points.

Some a-priori information needs to be injected in order to make a choice. One way to
do this is through the minimization of a certain energy among all possible candidates.

Remark : in the univariate case, the piecewise linear and cubic spline interpolants on an
interval I minimize the elastic and torsion energies

∫
I
|v ′′|2 and

∫
I
|v ′′′′ |2, respectively.

Reproducing Kernel Hilbert Space (RKHS) : a Hilbert space of function H defined on
some domain U that is continuously embedded in the space of continuous function
C (U) (in our case U = [−1, 1]d ).

We assume that the space is rich enough such that for all {y1, . . . , yn} and values
{v1, . . . , vn} there exists v ∈ H such that v(y i ) = vi for i = 1, . . . , n.

Example : Sobolev space Hs (U) with s > d/2.

RKHS interpolation (Kimmeldorf-Wahba, 1971, Duchon, 1977) : define interpolant as

Inu = I{y1,...,yn}u := argmin
{
‖v‖H : v(y i ) = u(y i ), i = 1, . . . , n

}
.

This minimizer turns out to be easily computable.
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The reproducing kernel

For any y ∈ U, there exists Ky ∈ H such that

〈Ky , v〉X = v(y), v ∈ H.

The functions (Ky )y∈U are complete in H. We define the reproducing kernel (RK) as

K (y , z) := 〈Ky ,Kz 〉H = Ky (z) = Kz (y)

The RK satisfies the positive definiteness property

n∑

i=1

n∑

j=1

K (y i , y j )cicj > 0, (c1, . . . , cn) 6= (0, . . . , 0), y1, . . . , yn ∈ U, n ≥ 0.

Conversly (Aronszajn, 1950), a function K satisfying this property generates a RKHS
H = HK defined as the closure of the linear combinations of the functions
Ky = K (y , ·) for the norm induced by the inner product 〈Ky ,Kz〉H := K (y , z).

Radial basis functions (RBF) : if RK is of the form K (y , z) = k(|y − z |), the functions

Ky is the translate at y of the radial function z 7→ k(|z |) (e.g. Gaussian e−a|z|2 ).
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Computation of the RKHS interpolation

It is then easily seen that the RKHS interpolation is of the form Inu =
∑n

j=1 cjKy j ,

where (c1, . . . , cn) is the unique solution to the system

n∑

j=1

K (y i , y j )cj = u(y i ), i = 1, . . . , n.

RKHS interpolation is formally equivalent to gaussian process interpolation which was
introduced in geostatistics engineering as Kriging (Matheron, 1978).

For a given positive definite kernel K we consider a centered gaussian process v with
covariance K (y , z) (reflects the uncertainty on the unknown u).

Then In can be defined as the conditional expectation

In(y) = E
(

v(y)
∣

∣

∣
v(y j ) = u(y j ), j = 1, . . . , n

)

.

It is also the best linear estimator Inu(y) =
∑n

j=1 aj (y)u(y
j ) minimizing among all

a1, . . . , an the mean square error E
(

|u(y) −
∑n

j=1 aju(y
j )|2

)
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Adaptive strategies

The gaussian process interpretation leads to natural strategies for adaptive
algorithms :

1. Point selection : given y1, . . . , yn, choose yn+1 where E(|u(y) − Inu(y)|
2) is largest.

2. Kernel adaptation : using cross-validation, for example with anisotropic gaussians

K (y , z) = Kb(y , z) = exp
(

−

d∑

j=1

bj |yj − zj |
2
)

, b = (b1, . . . , bd ),

find b which minimizes
∑n

i=1

∣

∣

∣
u(y i ) − I{y1,...,yn}−{y i }u(y

i )
∣

∣

∣

2

Not much is known on the analysis of these stragegies (need relevant model classes).

Works in arbitrarily high dimension, however costful in moderately large dimension due
to the two above non-convex optimization problems.

The system is always solvable but is often ill-conditionned.
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Sparse polynomial interpolation

We want to use general multivariate polynomial spaces of the form

PΛ = span{y 7→ yν : ν = (νj )j≥1 ∈ Λ}, yν :=
∏

j≥1

y
νj
j
.

We assume that Λ is a lower set :

ν ∈ Λ and µ ≤ ν⇒ µ ∈ Λ.

ν

1

ν3

2

ν

Motivation : for relevant classes of functions u arising from parametric PDEs, there
exists sequences of lower sets (Λn)n≥0 such that for some s > 0,

min
v∈PΛn

‖u − v‖L∞(U) ≤ Cn−s .
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Univariate nested interpolation

Let {t0, t1, t2 . . .}, be an infinite sequence of pairwise distinct points in [−1, 1] and let
Ik be the univariate interpolation operator on Pk associated to the section {t0, . . . , tk }.

Hierarchical (Newton) form :

Ik =

k∑

l=0

∆l , ∆l := Il − Il−1 and I−1 := 0.

Note that ∆kPl = 0 and ∆ku(tl ) = 0 for all l < k. Expansion in a hierarchical basis

∆lu = αlhl , αl := u(tl ) − Il−1u(tl ) and hl (t) =

l−1∏

j=0

t − tj

tl − tj
.

The choice of {t0 , t1, t2 . . .} is important for stability. The usual choices, such as
Chebychev or Clemshaw-Curtis, are not section of a single infinite sequence.

Leja points : initialize with arbitrary t0, usually t0 = 1, then

tl := argmaxt∈[−1,1]

l−1∏

j=0

|t − tl |.

Note that this choice ensures ‖hl‖L∞ ≤ 1. Close to Fekete points argmax
∏

j 6=l |tj − tl |.
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Tensorization

Tensorized grid : for any multi-index ν, we define the point

zν := (tν1 , tν2 , . . . ) ∈ U .

Tensorized operators : for any multi-index µ, we define

Iµ = ⊗j≥1Iµj and ∆µ := ⊗j≥1∆µj .

Iµ is the interpolation operator on the space of polynomials of degree µj in each yj

Pµ = PRµ
, Rµ = {ν : ν ≤ µ},

associated to the grid of point

ΓRν
:= {zν : ν ∈ Rµ}.

Observe that

Iµ = ⊗j≥1

(

µj∑

l=0

∆l

)

=
∑

ν≤µ
∆ν =

∑

ν∈Rµ

∆ν.
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Sparsification

Theorem (Cohen-Chkifa-Schwab, 2013, Dyn-Floater, 2013, Kuntzmann, 1959) : if Λ is
any lower set, the grid

ΓΛ := {zν : ν ∈ Λ},
is unisolvent for PΛ = span{y 7→ yν : ν ∈ Λ} and the interpolant is given by

IΛ :=
∑

ν∈Λ
∆ν, ∆ν := ⊗j≥1∆νj .

Proof : ΓΛ has the right cardinality, it suffices to prove that IΛu(zµ) = u(zµ) for any
µ ∈ Λ. This follows from

IΛ = Iµ +
∑

ν∈Λ ν
µ
∆ν.

and observe that Iµu(zµ) = u(zµ) and ∆νu(zµ) = 0 if ν 
 µ.
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Hierarchical computation

With the tensorized hierarchical basis Hν(y) =
∏

j≥1 hνj (yj ), we have

∆νu(y) = ανHν(y).

where the coefficients αν can be computed recursively.

Write Λ = Λn = {ν1, . . . , νn} where the enumeration is such that Λk = {ν1, . . . , νk } is
downward closed for all k = 1, . . . , n. Then

ανk = u(zνk ) − IΛk−1
u(zνk ).

Remark : the same general principles (tensorization, sparsification, hierarchical
computation) apply to any other systems such as trigonometric polynomials or
hierarchical piecewise linear finite elements.
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Adaptive algorithms

Given Λ, we consider its set of neighbors N (Λ) consisting of those ν /∈ Λ such that
Λ ∪ {ν} is also a lower set.

Adaptive algorithm : given Λn, define Λn+1 := Λn ∪ {ν∗} with

ν∗ := argmax{‖∆νu‖L∞ : ν ∈ N (Λn)}.

ν2

ν1
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Theoretical difficulties

The previous adaptive algorithm may fail to converge (in particular ∆νu = 0 for some
ν and ∆µu 6= 0 for a µ ≥ ν.

Behaves well in many practical situations.

More conservative variant : Use the above selection rule if n is even, and for odd n

choose ν∗ ∈ N (Λn) which was already contained in N(Λk ) for the smallest value of k.

Other variants : measure ∆νu in Lp norm, use |
∫
U
∆νu| (integration), or ν∗ ∈ N (Λn)

minimizing u(zν) (optimization)...
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Robustness to dimension growth

We apply the adaptive interpolation algorithm to

u(y) :=
(

1 +

d∑

j=1

γjyj

)−1
, γj =

3

5j3
,

for different numbers d of variables.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

log
10

(#Λ)

lo
g 10

(S
up

re
m

um
 e

rr
or

)

 

 

dim 8
dim 16
dim 32
dim 64



Robustness to noise

Same function u in dimension d = 16, with noisy samples (noise level = 10−2). using
adaptive interpolation based on different univariate sequences.
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Stability

We want to study the Lebesgue constant

LΛ := ‖IΛ‖L∞→L∞ = sup
u

‖IΛu‖L∞
‖u‖L∞

Useful for approximation since

‖u − IΛu‖L∞ ≤ ‖u − v‖L∞ + ‖IΛv − IΛu‖L∞ , v ∈ PΛ,

and thus
‖u − IΛu‖L∞ ≤ (1 + LΛ) min

v∈PΛ
‖u − v‖L∞

The following result relates LΛ to the univariate Lebesgue constant

Lk := ‖Ik‖L∞→L∞ = sup
u

‖Iku‖L∞
‖u‖L∞

Theorem (Chkifa-Cohen-Schwab, 2013) : if Lk ≤ (1 + k)a, then LΛ ≤ #(Λ)1+a.



Stability

We want to study the Lebesgue constant

LΛ := ‖IΛ‖L∞→L∞ = sup
u

‖IΛu‖L∞
‖u‖L∞

Useful for approximation since

‖u − IΛu‖L∞ ≤ ‖u − v‖L∞ + ‖IΛv − IΛu‖L∞ , v ∈ PΛ,

and thus
‖u − IΛu‖L∞ ≤ (1 + LΛ) min

v∈PΛ
‖u − v‖L∞

The following result relates LΛ to the univariate Lebesgue constant

Lk := ‖Ik‖L∞→L∞ = sup
u

‖Iku‖L∞
‖u‖L∞

Theorem (Chkifa-Cohen-Schwab, 2013) : if Lk ≤ (1 + k)a, then LΛ ≤ #(Λ)1+a.



Stability

We want to study the Lebesgue constant

LΛ := ‖IΛ‖L∞→L∞ = sup
u

‖IΛu‖L∞
‖u‖L∞

Useful for approximation since

‖u − IΛu‖L∞ ≤ ‖u − v‖L∞ + ‖IΛv − IΛu‖L∞ , v ∈ PΛ,

and thus
‖u − IΛu‖L∞ ≤ (1 + LΛ) min

v∈PΛ
‖u − v‖L∞

The following result relates LΛ to the univariate Lebesgue constant

Lk := ‖Ik‖L∞→L∞ = sup
u

‖Iku‖L∞
‖u‖L∞

Theorem (Chkifa-Cohen-Schwab, 2013) : if Lk ≤ (1 + k)a, then LΛ ≤ #(Λ)1+a.



Stability of univariate sequences

For Leja point, it is known (Taylor-Totik, 2008) that Lk is sub-exponential

lim
k→+∞

L1/k
k

= 1.

Numerical computation seems to indicate that

Lk ≤ 1 + k.

Clemshaw-Curtis points Ck = {cos(lπ/k) : l = 0, . . . , k} are dyadically nested :

C2j+1 ⊂ C2j+1+1.

For the values k = 2j+1 we know that Lk ∼ log(k).

Problem : how to fill in the intermediate values ?

Sequencial enumeration : disastrous behaviour of Lk .

Van der Corput enumeration : it can be proved (Chkifa, 2013) that

Lk ≤ (1 + k)2.

This is also the projection of the Leja point for the complex unit disc (R-Leja points).
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Stability

Lebesgue constant for the Clemshaw-Curtis point with sequencial intermediate filling.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

number of points

lo
g(

Le
be

sg
ue

 c
on

st
an

t)

 

 

Sequential
Clunshaw−curtis



Stability

The Lebesgue constant for the Leja points (red) and the R-Leja points (blue).
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Comparison with kriging interpolation algorithms

Test case : y = (y1, y2, y3, y4, y5) shape parameters in the design of an airfoil and u(y)

is the lift to drag ratio (scalar quantity of interest) obtained by ONERA numerical
solver.
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Error curves in terms of number of points are comparable.

The CPU cost for sparse interpolation scales linearly with the number of points.

This contrasts with kriging methods which require solving ill-conditionned linear
systems of growing size + optimization of the parameters of a Gaussian kernel.



Reduced order modeling and n-width

Recall the benchmark of Kolmogorov n-width of the solution manifold

dn(M)V = inf
dim(E)=n

max
v∈M

min
w∈E

‖v − w‖V = inf
dim(E)=n

max
y∈U

min
w∈E

‖u(y) − w‖V .

Uniform approximation estimates of the solution map y 7→ u(y) by polynomial (or
other separable) expansions give an upper bound on n-width

dn(M)V ≤ min
v∈VΛn

‖u − v‖L∞(U,V ) ≤ Cn−s .

We do not know other approaches to estimate the n-width of the solution manifold by
above.

These estimates might very pessimistic in the sense that he actual n-width dn(M)V is
much smaller than the right side.

We do not have results proving lower bounds for the n-widths of solution manifolds.

It is desirable to have numerical reduced modeling methods that can provably perform
as good as the n-width benchmark.
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Reduced bases (Maday, Patera)

Define a reduced modeling space Vn = span{u1, . . . , un}, where the ui are particular
instances (snapshots) from the solution manifold

ui = u(ai )

for some a1, . . . , an ∈ M.

Greedy selection : having selected u1, . . . , uk−1 ∈ M, choose the next instance by

uk = argmax{‖v − PVk−1
v‖V : v ∈ M},

where PE is the V -orthogonal projector onto E , or equivalently uk = u(yk), with

yk = argmax{‖u(y) − PVk−1
u(y)‖V : y ∈ U}.

This algorithm is not realistic : ‖u(u) − PVk−1
u(y)‖V is unknown, however can be

estimate at moderate cost by a-posteriori error analysis. Therefore, one rather apply a
weak-greedy algorithm : uk such that

‖uk − PVk−1
uk‖V ≥ γmax{‖v − PVk−1

v‖V : v ∈ M},

for some fixed 0 < γ < 1.
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Comparison with n-width

Performance of reduced bases : σn(M)V := max{‖v − PVn
v‖V : v ∈ M}

Comparison with n-width : σn(M)V can be much larger than dn(M)V for an
individual n and M.

There exists M and n such that σn(M)V ≥ 2ndn(M)V .

However, a more favorable comparison is possible in terms of convergence rates :

Theorem (Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk, 2013) : For any s > 0
one has

sup
n≥1

nsdn(M)V <∞ ⇒ sup
n≥1

nsσn(M)V <∞,

and for any a > 0 there exists b > 0 such that

sup
n≥1

ean
s

dn(M)V <∞ ⇒ sup
n≥1

ebn
s

σn(M)V <∞.



Conclusions

The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).

Reduced bases achieve “almost” the same performance as optimal spaces
corresponding to Kolmogorov n-width.


