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In a masterfully written paper (published in 1828 in Crelle’s Journal ) A. F. Mobius stud-
ied some properties of the polynomial equations for the circumradius of arbitrary cyclic
polygons (convex and nonconvex) and showed the existence of a polynomial of degree
o =2 (L(nyi_nl Ja)) — 2" ? that relates the square of a circumradius (r?) of a cyclic polygon
to the squared side lengths. His approach is based, by a clever use of trigonometry, on
the rationalization (in terms of the squared sines ) of the sine of a sum of n angles (pe-
ripheral angles of a cyclic polygon ). In this way one obtains a polynomial relating the
circumradius to the side lengths squared. These polynomials, known also as generalized
Heron r—polynomials, are a kind of generalized (symmetric) multivariable Chebyshev
polynomials and are quite difficult to be computed explicitly. By an argument involving
series expansions (cf. [7]) he proved that the 7?—degree for cyclic n—polygon is equal
to &,. Mdbius also obtained for the squared area a rational function in 72, ay, as, ..., an
involving partial derivatives, with respect to side length variables, of all the coefficients
of the Heron r—polynomial.

About ten years ago David Robbins ([2], [3]) obtained, for the first time, concise explicit
formulas for the areas of cyclic pentagons and hexagons (he mentioned that he com-
puted also the circumradius polynomials for cyclic pentagons and hexagons but was not
able to put either formula into a sensible compact form). In [2] two general conjectures
(Conjecturel and Conjecture?), naturally extending nice Mobius product formulas for the
leading and constant terms for pentagons and hexagons are given. We shall give a proof
of these conjectures up ton = 8.

One of the Additional Conjectures of Robbins, stating that the degree of the minimal
A-polynomial equation for cyclic n—polygons a,, (1652, a3, ..., a2) = 0, (i.e. of the gener-
alized Heron A— polynomial), is equal to §,, was established in [9] first (by relating it to
the Sabitov theory of volume polynomials of polyhedra, see nice survey article by Pak )
and later in [7] (obtained by reviving the argument of Mbius and reproving the Robbins
lower bound on the degrees of minimal polynomials ).

In Robbins work a method of undetermined coefficients is used for pentagons (70 un-
knowns) and hexagons (134 unknowns). This method seems to be inadequate for hep-
tagons because one would need to handle a linear system with 143307 undetermined



coefficients. By using a clever substitution (Robbins ¢;’s) he was able to write the pen-
tagon and hexagon area equations in a compact form. He wrote his formulas also as a
discriminant of some (still mysterious) qubic. In [7] a formula for the area polynomial
for heptagons and octagons is found in the form of a quotient of two resultants, one of
which could be expanded explicitly so far. This exiting result was finished by two of the
Robbins collaborators just few months later after Robbins passed away.

Another approach, which uses elimination of diagonals in cyclic polygons, is treated at
length in [10] where among numerous results one also finds an explicit derivation of the
Robbins area polynomial for pentagons by using some general properties, developed in
that paper, together with a little use of one undetermined coefficient. In [4], the Robbins
pentagon area formula was obtained intrinsically with a simpler system of equations by a
direct elimination (and MAPLE of course) with no assistance of undetermined coefficient
method. Also for hexagon (a much harder case) an intrinsic proof was found in [6].

In this talk we illustrate yet another approach to the Robbins problem, especially well
suited for obtaining Heron r—polynomials. We have discovered that Robbins problem is
somehow related to a Wiener-Hopf factorization. We first associate a Laurent polynomial
L p to a cyclic polygon Pwhich is invariant under similarity of cyclic polygons (it is a kind
of “conformal invariant”). Then there exists a (Wiener-Hopf ) factorization of Lp into a
product of two polynomials, 4 (1/2) and v_(2) , (in our case it will be 7_ = 74 =: )
providing a complex realization of P is given. The factorization (i.e. 7(z)) is then given
in terms of the elementary symmetric functions e, of the vertex quotients, if we regard
vertices of (a realization of) P as complex numbers of equal moduli (= r). For €} s, viewed
as the unknowns, we then obtain a system of n quadratic equations, arising from our
Wiener-Hopf factorization, with n — 1 unknowns (note that e,, is necessarily equal to
1 as a product of all the vertex quotients (we call this a “cocycle property” or simply
”cocyclicity”)). The consistency condition (obtained by eliminating all e;, k = 1..n — 1)
for our “overdetermined” system will then give a relation between the coefficients of
our conformal invariant Lp, which in turn will be nothing but the equation relating the
inverse square radius of P with the side lengths squared.

In the course of these investigations we found another type of substitutions by express-
ing the coefficients of Lp in terms of the inverse radius squared (p) and the elementary
symmetric functions of side lengths squared. By using this substitutions, our Heron p-
polynomials get remarkably small coefficients. Further simplifications we have obtained
by doing computations in some quadratic algebraic extensions. In such quadratic exten-
sions we can simplify our original system (having all but one equations quadratic) by
replacing two quadratic equations by two linear ones). Also the final result can be writ-
ten in a more compact form p, = A2 — A, B2 (a Pell equation). Thus the number of terms
is the final formula is roughly a square root of the number of terms in the fully expanded
formula. With such tricks we have obtained so far , down to earth, explicit formulas for
Heron p—polynomials, up to n = 8.

For tangential polygons the Heron r—polynomials can be handled more easily and more
generally in terms of tangential segments of a polygon instead of lengths of its sides.
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